Class: RANN::Backprop
- Inherits:
-
Object
- Object
- RANN::Backprop
- Includes:
- Util::ArrayExt
- Defined in:
- lib/rann/backprop.rb
Constant Summary collapse
- ACTIVATION_DERIVATIVES =
{ relu: ->(x){ x > 0 ? 1.to_d : 0.to_d }, sig: ->(x){ x * (1 - x) }, linear: ->(_){ 1.to_d }, tanh: ->(x){ 1 - x ** 2 }, step: ->(_){ 0.to_d }, }
Instance Attribute Summary collapse
-
#network ⇒ Object
Returns the value of attribute network.
Class Method Summary collapse
- .bptt_connecting_to(neuron, network, timestep) ⇒ Object
- .mse(targets, outputs) ⇒ Object
- .mse_delta(target, actual) ⇒ Object
- .reset!(network) ⇒ Object
- .run_single(network, inputs, targets) ⇒ Object
Instance Method Summary collapse
-
#initialize(network, opts = {}) ⇒ Backprop
constructor
A new instance of Backprop.
- #restore(filepath = nil) ⇒ Object
- #run_batch(inputs, targets, opts = {}) ⇒ Object
- #save(filepath = nil) ⇒ Object
Methods included from Util::ArrayExt
Constructor Details
#initialize(network, opts = {}) ⇒ Backprop
Returns a new instance of Backprop.
23 24 25 26 27 28 |
# File 'lib/rann/backprop.rb', line 23 def initialize network, opts = {} @network = network @connections_hash = network.connections.each.with_object({}){ |c, h| h[c.id] = c } @optimiser = RANN::Optimisers.const_get(opts[:optimiser] || 'RMSProp').new opts @batch_count = 0.to_d end |
Instance Attribute Details
#network ⇒ Object
Returns the value of attribute network.
21 22 23 |
# File 'lib/rann/backprop.rb', line 21 def network @network end |
Class Method Details
.bptt_connecting_to(neuron, network, timestep) ⇒ Object
246 247 248 249 250 251 252 253 254 255 256 257 258 |
# File 'lib/rann/backprop.rb', line 246 def self.bptt_connecting_to neuron, network, timestep # halt traversal if we're at a context and we're at the base timestep return [] if neuron.context? && timestep == 0 timestep -= 1 if neuron.context? network.connections_to(neuron).each.with_object [] do |c, a| # don't enqueue connections from inputs next if c.input_neuron.input? a << [c.input_neuron, timestep] end end |
.mse(targets, outputs) ⇒ Object
232 233 234 235 236 237 238 239 240 |
# File 'lib/rann/backprop.rb', line 232 def self.mse targets, outputs total_squared_error = 0.to_d targets.size.times do |i| total_squared_error += (targets[i] - outputs[i]) ** 2 / 2 end total_squared_error end |
.mse_delta(target, actual) ⇒ Object
242 243 244 |
# File 'lib/rann/backprop.rb', line 242 def self.mse_delta target, actual actual - target end |
.reset!(network) ⇒ Object
227 228 229 230 |
# File 'lib/rann/backprop.rb', line 227 def self.reset! network network.reset! network.neurons.select(&:context?).each{ |n| n.value = 0.to_d } end |
.run_single(network, inputs, targets) ⇒ Object
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/rann/backprop.rb', line 98 def self.run_single network, inputs, targets states = [] inputs = [inputs] if inputs.flatten == inputs # run the data into the network. (feed forward) # all but last (inputs.size - 1).times do |timestep| network.evaluate inputs[timestep] states[timestep] = network.reset! end # last outputs = network.evaluate inputs.last states[inputs.size - 1] = network.reset! # calculate error error = mse targets, outputs # backward pass with unravelling for recurrent networks node_deltas = Hash.new{ |h, k| h[k] = {} } initial_timestep = inputs.size - 1 neuron_stack = network.output_neurons.map{ |n| [n, initial_timestep] } # initialize network end-point node_deltas in all timesteps with zero network.neurons_with_no_outgoing_connections.each do |n| (0...(inputs.size - 1)).each do |i| node_deltas[i][n.id] = 0.to_d neuron_stack << [n, i] end end gradients = Hash.new 0.to_d while current = neuron_stack.shift neuron, timestep = current next if node_deltas[timestep].key? neuron.id # neuron delta is summation of neuron deltas deltas for the connections # from this neuron if neuron.output? output_index = network.output_neurons.index neuron step_one = mse_delta targets[output_index], outputs[output_index] else sum = network.connections_from(neuron).reduce 0.to_d do |m, c| out_timestep = c.output_neuron.context? ? timestep + 1 : timestep output_node_delta = node_deltas[out_timestep][c.output_neuron.id] if out_timestep > initial_timestep m elsif !output_node_delta break else # connection delta is the output neuron delta multiplied by the # connection's weight connection_delta = if c.output_neuron.is_a? ProductNeuron intermediate = network.connections_to(c.output_neuron).reject{ |c2| c2 == c }.reduce 1.to_d do |m, c2| m * states[timestep][:values][c2.input_neuron.id] * c2.weight end output_node_delta * intermediate * c.weight else output_node_delta * c.weight end m + connection_delta end end step_one = sum || next end from_here = bptt_connecting_to neuron, network, timestep neuron_stack |= from_here node_delta = ACTIVATION_DERIVATIVES[neuron.activation_function] .call(states[timestep][:values][neuron.id]) * step_one node_deltas[timestep][neuron.id] = node_delta in_timestep = neuron.context? ? timestep - 1 : timestep network.connections_to(neuron).each do |c| # connection gradient is the output neuron delta multipled by the # connection's input neuron value. gradient = if c.output_neuron.is_a? ProductNeuron intermediate = states[timestep][:intermediates][c.output_neuron.id] node_delta * intermediate / c.weight elsif c.input_neuron.context? && timestep == 0 0.to_d else node_delta * states[in_timestep][:values][c.input_neuron.id] end gradients[c.id] += gradient end end reset! network [gradients, error] end |
Instance Method Details
#restore(filepath = nil) ⇒ Object
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# File 'lib/rann/backprop.rb', line 211 def restore filepath = nil unless filepath filepath = Dir['*'].select{ |f| f =~ /rann_savepoint_.*/ }.sort.last unless filepath @network.init_normalised! puts "No savepoints found—initialised normalised weights" return end end weights, opt_vars = YAML.load_file(filepath) @network.impose(weights) @network.optimiser.load_state(opt_vars) end |
#run_batch(inputs, targets, opts = {}) ⇒ Object
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# File 'lib/rann/backprop.rb', line 30 def run_batch inputs, targets, opts = {} @batch_count += 1 batch_size = inputs.size avg_gradients = Hash.new{ |h, k| h[k] = 0 } avg_batch_error = 0 # force longer bits of work per iteration, to maximise CPU usage less # marshalling data and process overhead etc. best for small networks. for # larger networks where one unit of work takes a long time, and the work # can vary in time taken, use num_groups == inputs.size num_groups = opts[:num_groups] || ([1, opts[:processes]].max * 10) grouped_inputs = in_groups(inputs, num_groups, false).reject &:empty? reduce_proc = lambda do |_, _, result| group_avg_gradients, group_avg_error = result avg_gradients.merge!(group_avg_gradients){ |_, o, n| o + n } avg_batch_error += group_avg_error end Parallel.each_with_index( grouped_inputs, in_processes: opts[:processes], finish: reduce_proc ) do |inputs, i| group_avg_gradients = Hash.new{ |h, k| h[k] = 0.to_d } group_avg_error = 0.to_d inputs.each_with_index do |input, j| gradients, error = Backprop.run_single network, input, targets[i + j] gradients.each do |cid, g| group_avg_gradients[cid] += g / batch_size end group_avg_error += error / batch_size end group_avg_gradients.default_proc = nil [group_avg_gradients, group_avg_error] end if opts[:checking] # check assumes batchsize 1 for now sorted_gradients = avg_gradients.values_at *network.connections.map(&:id) invalid = GradientChecker.check network, inputs.first, targets.first, sorted_gradients if invalid.empty? puts "gradient valid" else puts "gradients INVALID for connections:" invalid.each do |i| puts "#{network.connections[i].input_neuron.name} -> #{network.connections[i].output_neuron.name}" end end end avg_gradients.each do |con_id, gradient| con = @connections_hash[con_id] next if con.locked? update = @optimiser.update gradient, con.id con.weight += update end avg_batch_error end |
#save(filepath = nil) ⇒ Object
200 201 202 203 204 205 206 207 208 209 |
# File 'lib/rann/backprop.rb', line 200 def save filepath = nil filepath ||= "rann_savepoint_#{DateTime.now.strftime('%Y-%m-%d-%H-%M-%S')}.yml" weights = @network.params opt_vars = @optimiser.state File.open filepath, "w" do |f| f.write YAML.dump [weights, opt_vars] end end |