Class: RankAggregation::Ranker
- Inherits:
-
Object
- Object
- RankAggregation::Ranker
- Defined in:
- lib/rank-aggregation/ranker.rb
Instance Attribute Summary collapse
-
#items ⇒ Object
Returns the value of attribute items.
-
#less_scores ⇒ Object
Returns the value of attribute less_scores.
-
#logger ⇒ Object
Returns the value of attribute logger.
-
#smoothing ⇒ Object
Returns the value of attribute smoothing.
Instance Method Summary collapse
- #add_ranking(xs) ⇒ Object
- #combined_rankings ⇒ Object
-
#initialize ⇒ Ranker
constructor
A new instance of Ranker.
- #kendall_distance ⇒ Object
- #less_chances ⇒ Object
- #rough_combined_rankings ⇒ Object
- #rough_scores ⇒ Object
Constructor Details
#initialize ⇒ Ranker
Returns a new instance of Ranker.
11 12 13 14 15 16 17 18 19 |
# File 'lib/rank-aggregation/ranker.rb', line 11 def initialize @less_scores = {} @items = Set.new @smoothing = 5 @vote_count = 0 @rank_count = 0 self.logger = Logger.new(STDERR) self.logger.level = Logger::WARN end |
Instance Attribute Details
#items ⇒ Object
Returns the value of attribute items.
9 10 11 |
# File 'lib/rank-aggregation/ranker.rb', line 9 def items @items end |
#less_scores ⇒ Object
Returns the value of attribute less_scores.
9 10 11 |
# File 'lib/rank-aggregation/ranker.rb', line 9 def less_scores @less_scores end |
#logger ⇒ Object
Returns the value of attribute logger.
9 10 11 |
# File 'lib/rank-aggregation/ranker.rb', line 9 def logger @logger end |
#smoothing ⇒ Object
Returns the value of attribute smoothing.
9 10 11 |
# File 'lib/rank-aggregation/ranker.rb', line 9 def smoothing @smoothing end |
Instance Method Details
#add_ranking(xs) ⇒ Object
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# File 'lib/rank-aggregation/ranker.rb', line 21 def add_ranking(xs) xs = xs.uniq return if xs.size <= 1 @rank_count += 1 reset_cached xs.each{|x| @less_scores[x] ||= Hash.new(0.0); items.add x } weight = 1.0 / (0.5 * xs.size * (xs.size - 1)) (0...xs.length).each{|i| ((i+1)...xs.length).each{|j| @less_scores[xs[i]][xs[j]] += weight } } @vote_count += 1 end |
#combined_rankings ⇒ Object
99 100 101 102 103 |
# File 'lib/rank-aggregation/ranker.rb', line 99 def combined_rankings @_combined_rankings ||= begin triangle_shuffle(rough_combined_rankings) end end |
#kendall_distance ⇒ Object
105 106 107 |
# File 'lib/rank-aggregation/ranker.rb', line 105 def kendall_distance @_kendall_distance ||= kendall_distance_for(combined_rankings) end |
#less_chances ⇒ Object
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/rank-aggregation/ranker.rb', line 41 def less_chances @_less_chances ||= begin logger.debug "calculating less_chances" less_chances = Hash.new{|h, k| h[k] = Hash.new(0.5)} less_scores.each{|x, vs| vs.each{|y, c| p = (c + 0.5 * self.smoothing) / (self.smoothing + c + less_scores[y][x]) less_chances[x][y] = p less_chances[y][x] = 1 - p } } logger.debug "calculating less_chances complete" less_chances end end |
#rough_combined_rankings ⇒ Object
93 94 95 96 97 |
# File 'lib/rank-aggregation/ranker.rb', line 93 def rough_combined_rankings @_rough_combined_rankings ||= begin @items.sort{|x, y| rough_scores[x] <=> rough_scores[y] } end end |
#rough_scores ⇒ Object
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/rank-aggregation/ranker.rb', line 58 def rough_scores @_rough_scores ||= begin logger.debug "calculating rough_scores" # This markov chain is based off MC4. The idea is as follows: # Starting at an item we pick one of the other items at random. # We then transition to that item with probability P(i < j). # If we fail to transition we stay where we are. # i.e. the probability of transitioning form i to j with i != j is 1/(n-1) P(i < j). logger.debug "calculating transition probabilities" transitions = {} @items.each{|i| transitions[i] = {} tot = 0.0 @items.each{|j| next if i == j p = less_chances[i][j] / (@items.size - 1) tot += p transitions[i][j] = p } if tot <= 1 transitions[i][i] = 1 - tot else transitions[i][i] = 0 end } logger.debug "calculating transition probabilities complete" result = MarkovChain.new(@items, transitions, logger).stationary_distribution logger.debug "calculating rough_scores complete" result end end |