Class: Ragdoll::UnifiedDocument

Inherits:
ActiveRecord::Base
  • Object
show all
Defined in:
app/models/ragdoll/unified_document.rb

Overview

Unified document model for text-based RAG system All documents have their content converted to text for unified search and embedding

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.all_media_typesObject

Get all unique original media types



209
210
211
# File 'app/models/ragdoll/unified_document.rb', line 209

def self.all_media_types
  joins(:unified_contents).distinct.pluck("unified_contents.original_media_type").compact.sort
end

.search_content(query, **options) ⇒ Object

Search content using PostgreSQL full-text search



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# File 'app/models/ragdoll/unified_document.rb', line 139

def self.search_content(query, **options)
  return none if query.blank?

  words = query.downcase.scan(/[[:alnum:]]+/).uniq
  return none if words.empty?

  limit = options[:limit] || 20
  threshold = options[:threshold] || 0.0

  # Build tsvector from title and content
  text_expr = "COALESCE(title, '') || ' ' || COALESCE(content, '')"
  tsvector = "to_tsvector('english', #{text_expr})"

  # Prepare sanitized tsquery terms
  tsqueries = words.map do |word|
    sanitize_sql_array(["plainto_tsquery('english', ?)", word])
  end

  # Combine per-word tsqueries
  combined_tsquery = tsqueries.join(' || ')

  # Score calculation
  score_terms = tsqueries.map { |tsq| "(#{tsvector} @@ #{tsq})::int" }
  score_sum = score_terms.join(' + ')
  similarity_sql = "(#{score_sum})::float / #{words.size}"

  # Build query with content from unified_contents
  query = joins(:unified_contents)
          .select("#{table_name}.*, string_agg(unified_contents.content, ' ') as content, #{similarity_sql} AS fulltext_similarity")
          .group("#{table_name}.id")

  # Build where conditions
  conditions = ["#{tsvector} @@ (#{combined_tsquery})"]

  # Add status filter
  status = options[:status] || 'processed'
  conditions << "#{table_name}.status = '#{status}'"

  # Add document type filter if specified
  if options[:document_type].present?
    conditions << sanitize_sql_array(["#{table_name}.document_type = ?", options[:document_type]])
  end

  # Add threshold filtering if specified
  if threshold > 0.0
    conditions << "#{similarity_sql} >= #{threshold}"
  end

  # Combine all conditions
  where_clause = conditions.join(' AND ')

  query.where(where_clause)
       .order(Arel.sql("fulltext_similarity DESC, updated_at DESC"))
       .limit(limit)
       .to_a
end

.statsObject

Get document statistics



214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# File 'app/models/ragdoll/unified_document.rb', line 214

def self.stats
  {
    total_documents: count,
    by_status: group(:status).count,
    by_type: group(:document_type).count,
    with_content: with_content.count,
    without_content: without_content.count,
    total_unified_contents: joins(:unified_contents).count,
    total_embeddings: joins(:embeddings).count,
    content_quality: {
      high: joins(:unified_contents).where("LENGTH(unified_contents.content) > 1000").distinct.count,
      medium: joins(:unified_contents).where("LENGTH(unified_contents.content) BETWEEN 100 AND 1000").distinct.count,
      low: joins(:unified_contents).where("LENGTH(unified_contents.content) < 100").distinct.count
    },
    storage_type: "unified_text_based"
  }
end

Instance Method Details

#contentObject

Unified content access



46
47
48
# File 'app/models/ragdoll/unified_document.rb', line 46

def content
  unified_contents.pluck(:content).compact.join("\n\n")
end

#content=(value) ⇒ Object



50
51
52
53
54
55
56
# File 'app/models/ragdoll/unified_document.rb', line 50

def content=(value)
  @pending_content = value

  return unless persisted?

  create_unified_content_from_pending
end

#content_quality_scoreObject

Content quality assessment



197
198
199
200
201
202
# File 'app/models/ragdoll/unified_document.rb', line 197

def content_quality_score
  return 0.0 unless unified_contents.any?

  scores = unified_contents.map(&:content_quality_score)
  scores.sum / scores.length
end

#generate_embeddings_for_content!Object

Generate embeddings for all content



99
100
101
# File 'app/models/ragdoll/unified_document.rb', line 99

def generate_embeddings_for_content!
  unified_contents.each(&:generate_embeddings!)
end

#generate_metadata!Object

Generate structured metadata using LLM



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# File 'app/models/ragdoll/unified_document.rb', line 104

def generate_metadata!
  return unless unified_contents.any?

  begin
    # Use the content for metadata generation
    full_content = content
    return if full_content.blank?

    # Generate basic metadata
     = {
      content_length: full_content.length,
      word_count: full_content.split(/\s+/).length,
      generated_at: Time.current,
      original_media_type: document_type
    }

    # Add document type specific metadata
    case document_type
    when "image"
      [:description_source] = "ai_generated"
    when "audio"
      [:transcript_source] = "auto_generated"
    when "video"
      [:content_source] = "mixed_media_conversion"
    end

    # Merge with existing metadata
    self. = .merge()
    save!
  rescue StandardError => e
    puts "Metadata generation failed: #{e.message}"
  end
end

#high_quality_content?Boolean

Returns:

  • (Boolean)


204
205
206
# File 'app/models/ragdoll/unified_document.rb', line 204

def high_quality_content?
  content_quality_score >= 0.7
end

#process_document!Object

Document processing for unified text-based RAG



72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# File 'app/models/ragdoll/unified_document.rb', line 72

def process_document!
  return if processed?

  begin
    update!(status: "processing")

    # Convert document to text using unified converter
    text_content = Ragdoll::DocumentConverter.convert_to_text(location, document_type)

    # Create or update unified content
    create_or_update_unified_content(text_content)

    # Generate embeddings
    generate_embeddings_for_content!

    # Generate metadata
    generate_metadata!

    update!(status: "processed")
  rescue StandardError => e
    puts "Document processing failed: #{e.message}"
    update!(status: "error", metadata: .merge("error" => e.message))
    raise
  end
end

#processed?Boolean

Returns:

  • (Boolean)


41
42
43
# File 'app/models/ragdoll/unified_document.rb', line 41

def processed?
  status == "processed"
end

#to_hash(include_content: false) ⇒ Object

Convert document to hash representation



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# File 'app/models/ragdoll/unified_document.rb', line 233

def to_hash(include_content: false)
  {
    id: id.to_s,
    title: title,
    location: location,
    document_type: document_type,
    status: status,
    content_length: content&.length || 0,
    word_count: total_word_count,
    embedding_count: total_embedding_count,
    content_quality_score: content_quality_score,
    file_modified_at: file_modified_at&.iso8601,
    created_at: created_at&.iso8601,
    updated_at: updated_at&.iso8601,
    metadata:  || {}
  }.tap do |hash|
    if include_content
      hash[:content] = content
      hash[:content_details] = unified_contents.map do |uc|
        {
          original_media_type: uc.original_media_type,
          content: uc.content,
          word_count: uc.word_count,
          embedding_count: uc.embedding_count,
          conversion_method: uc.conversion_method
        }
      end
    end
  end
end

#total_character_countObject



63
64
65
# File 'app/models/ragdoll/unified_document.rb', line 63

def total_character_count
  unified_contents.sum(&:character_count)
end

#total_embedding_countObject



67
68
69
# File 'app/models/ragdoll/unified_document.rb', line 67

def total_embedding_count
  embeddings.count
end

#total_word_countObject

Content statistics



59
60
61
# File 'app/models/ragdoll/unified_document.rb', line 59

def total_word_count
  unified_contents.sum(&:word_count)
end