Class: Ragdoll::TextGenerationService
- Inherits:
-
Object
- Object
- Ragdoll::TextGenerationService
- Defined in:
- app/services/ragdoll/text_generation_service.rb
Defined Under Namespace
Classes: GenerationError
Instance Method Summary collapse
- #extract_keywords(text, max_keywords: 20) ⇒ Object
- #generate_summary(text, max_length: nil) ⇒ Object
-
#initialize(client: nil, config_service: nil, model_resolver: nil) ⇒ TextGenerationService
constructor
A new instance of TextGenerationService.
Constructor Details
#initialize(client: nil, config_service: nil, model_resolver: nil) ⇒ TextGenerationService
Returns a new instance of TextGenerationService.
9 10 11 12 13 14 |
# File 'app/services/ragdoll/text_generation_service.rb', line 9 def initialize(client: nil, config_service: nil, model_resolver: nil) @config_service = config_service || Ragdoll::ConfigurationService.new @model_resolver = model_resolver || Ragdoll::ModelResolver.new(@config_service) @client = client configure_ruby_llm_if_possible unless @client end |
Instance Method Details
#extract_keywords(text, max_keywords: 20) ⇒ Object
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'app/services/ragdoll/text_generation_service.rb', line 93 def extract_keywords(text, max_keywords: 20) return [] if text.nil? || text.strip.empty? # Clean and prepare text cleaned_text = clean_text(text) # Create keyword extraction prompt prompt = build_keyword_prompt(cleaned_text, max_keywords) begin if @client == :ruby_llm_configured # Use RubyLLM for keyword extraction # Use keywords model from models config, fallback to default model_obj = @model_resolver.resolve_for_task(:keywords) model = model_obj.model chat = RubyLLM.chat.with_model(model).with_temperature(0.1) chat.(role: "user", content: prompt) response = chat.complete if response.respond_to?(:content) content = response.content.strip parse_keywords_response(content) elsif response.respond_to?(:message) && response..respond_to?(:content) content = response..content.strip parse_keywords_response(content) elsif response && response["choices"]&.first content = response["choices"].first["message"]["content"].strip parse_keywords_response(content) elsif response && response["content"] content = response["content"].strip parse_keywords_response(content) else raise GenerationError, "Invalid response format from text generation API" end elsif @client # Use custom client for testing model_obj = @model_resolver.resolve_for_task(:keywords) model = model_obj.model response = @client.chat( model: model, messages: [ { role: "user", content: prompt } ], max_tokens: 200, temperature: 0.1 ) if response && response["choices"]&.first content = response["choices"].first["message"]["content"].strip parse_keywords_response(content) elsif response && response["content"] content = response["content"].strip parse_keywords_response(content) else raise GenerationError, "Invalid response format from text generation API" end else # Fallback to basic keyword extraction for testing/dev environments puts "⚠️ No LLM client configured, using fallback keyword extraction" extract_basic_keywords(cleaned_text, max_keywords) end rescue StandardError => e # Fall back to basic keyword extraction if API fails puts "❌ LLM keyword extraction failed, using fallback: #{e.}" puts "Error class: #{e.class}" puts "Backtrace: #{e.backtrace.first(3).join(', ')}" extract_basic_keywords(cleaned_text, max_keywords) end end |
#generate_summary(text, max_length: nil) ⇒ Object
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'app/services/ragdoll/text_generation_service.rb', line 16 def generate_summary(text, max_length: nil) return "" if text.nil? || text.strip.empty? # Skip summarization if not enabled unless @config_service.config.summarization[:enable] puts "⚠️ LLM summarization disabled, using fallback (first 500 chars)" return text[0..500] end # Skip if content is too short min_length = @config_service.config.summarization[:min_content_length] return text if text.length < min_length max_length ||= @config_service.config.summarization[:max_length] # Clean and prepare text cleaned_text = clean_text(text) # Create summarization prompt prompt = build_summary_prompt(cleaned_text, max_length) begin if @client == :ruby_llm_configured # Use RubyLLM for text generation # Use model resolver to get summary model with inheritance model_obj = @model_resolver.resolve_for_task(:summary) model = model_obj.model chat = RubyLLM.chat.with_model(model) .with_temperature(0.3) chat.(role: "user", content: prompt) response = chat.complete if response.respond_to?(:content) response.content.strip elsif response.respond_to?(:message) && response..respond_to?(:content) response..content.strip elsif response && response["choices"]&.first response["choices"].first["message"]["content"].strip elsif response && response["content"] response["content"].strip else raise GenerationError, "Invalid response format from text generation API" end elsif @client # Use custom client for testing model_obj = @model_resolver.resolve_for_task(:summary) model = model_obj.model response = @client.chat( model: model, messages: [ { role: "user", content: prompt } ], max_tokens: max_length + 50, temperature: 0.3 ) if response && response["choices"]&.first response["choices"].first["message"]["content"].strip elsif response && response["content"] response["content"].strip else raise GenerationError, "Invalid response format from text generation API" end else # Fallback to basic summarization for testing/dev environments puts "⚠️ No LLM client configured, using fallback summarization" generate_basic_summary(cleaned_text, max_length) end rescue StandardError => e # Fall back to basic summarization if API fails puts "❌ LLM summary generation failed, using fallback: #{e.}" generate_basic_summary(cleaned_text, max_length) end end |