Class: RagEmbeddings::Embedding
- Inherits:
-
Object
- Object
- RagEmbeddings::Embedding
- Defined in:
- ext/rag_embeddings/embedding.c
Class Method Summary collapse
-
.from_array(rb_array) ⇒ Object
Creates a new embedding from a Ruby array.
Instance Method Summary collapse
-
#cosine_similarity(other) ⇒ Object
Calculate cosine similarity between two embeddings using optimized algorithm.
-
#dim ⇒ Object
Returns the dimension of the embedding.
-
#magnitude ⇒ Object
Calculate the magnitude (L2 norm) of the embedding vector.
-
#normalize! ⇒ Object
Normalize the embedding vector in-place (destructive operation).
-
#to_a ⇒ Object
Converts the embedding back to a Ruby array.
Class Method Details
.from_array(rb_array) ⇒ Object
Creates a new embedding from a Ruby array
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'ext/rag_embeddings/embedding.c', line 37 static VALUE (VALUE klass, VALUE rb_array) { Check_Type(rb_array, T_ARRAY); // Ensure argument is a Ruby array long array_len = RARRAY_LEN(rb_array); // Validate array length fits in uint16_t (max 65535 dimensions) if (array_len > UINT16_MAX) { rb_raise(rb_eArgError, "Array too large: maximum %d dimensions allowed", UINT16_MAX); } // Prevent zero-length if (array_len == 0) { rb_raise(rb_eArgError, "Cannot create embedding from empty array"); } uint16_t dim = (uint16_t)array_len; // Allocate memory for struct + array of floats *ptr = xmalloc(sizeof() + dim * sizeof(float)); ptr->dim = dim; // Copy values from Ruby array to our C array // Using RARRAY_CONST_PTR for better performance when available const VALUE *array_ptr = RARRAY_CONST_PTR(rb_array); for (uint16_t i = 0; i < dim; ++i) { VALUE val = array_ptr[i]; // Ensure the value is numeric if (!RB_FLOAT_TYPE_P(val) && !RB_INTEGER_TYPE_P(val)) { xfree(ptr); // Clean up allocated memory before raising exception rb_raise(rb_eTypeError, "Array element at index %d is not numeric", i); } ptr->values[i] = (float)NUM2DBL(val); } // Wrap our C struct in a Ruby object VALUE obj = TypedData_Wrap_Struct(klass, &, ptr); return obj; } |
Instance Method Details
#cosine_similarity(other) ⇒ Object
Calculate cosine similarity between two embeddings using optimized algorithm
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# File 'ext/rag_embeddings/embedding.c', line 107 static VALUE (VALUE self, VALUE other) { *a, *b; // Get C structs for both TypedData_Get_Struct(self, , &, a); TypedData_Get_Struct(other, , &, b); // Ensure dimensions match if (a->dim != b->dim) { rb_raise(rb_eArgError, "Dimension mismatch: %d vs %d", a->dim, b->dim); } // Use double precision for intermediate calculations to reduce accumulation errors double dot = 0.0, norm_a = 0.0, norm_b = 0.0; // Calculate dot product and vector magnitudes in a single loop // This is more cache-friendly than separate loops const float *va = a->values; const float *vb = b->values; for (uint16_t i = 0; i < a->dim; ++i) { float ai = va[i]; float bi = vb[i]; dot += (double)ai * bi; // Dot product norm_a += (double)ai * ai; // Square of magnitude for vector a norm_b += (double)bi * bi; // Square of magnitude for vector b } // Check for zero vectors to avoid division by zero if (norm_a == 0.0 || norm_b == 0.0) { return DBL2NUM(0.0); // Return 0 similarity for zero vectors } // Apply cosine similarity formula: dot(a,b)/(|a|*|b|) // Using sqrt for better numerical stability double magnitude_product = sqrt(norm_a * norm_b); double similarity = dot / magnitude_product; // Clamp result to [-1, 1] to handle floating point precision errors if (similarity > 1.0) similarity = 1.0; if (similarity < -1.0) similarity = -1.0; return DBL2NUM(similarity); } |
#dim ⇒ Object
Returns the dimension of the embedding
80 81 82 83 84 85 |
# File 'ext/rag_embeddings/embedding.c', line 80 static VALUE (VALUE self) { *ptr; // Get the C struct from the Ruby object TypedData_Get_Struct(self, , &, ptr); return INT2NUM(ptr->dim); } |
#magnitude ⇒ Object
Calculate the magnitude (L2 norm) of the embedding vector
154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# File 'ext/rag_embeddings/embedding.c', line 154 static VALUE (VALUE self) { *ptr; TypedData_Get_Struct(self, , &, ptr); double sum_squares = 0.0; const float *values = ptr->values; for (uint16_t i = 0; i < ptr->dim; ++i) { float val = values[i]; sum_squares += (double)val * val; } return DBL2NUM(sqrt(sum_squares)); } |
#normalize! ⇒ Object
Normalize the embedding vector in-place (destructive operation)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'ext/rag_embeddings/embedding.c', line 171 static VALUE (VALUE self) { *ptr; TypedData_Get_Struct(self, , &, ptr); // Calculate magnitude double sum_squares = 0.0; float *values = ptr->values; for (uint16_t i = 0; i < ptr->dim; ++i) { float val = values[i]; sum_squares += (double)val * val; } double magnitude = sqrt(sum_squares); // Avoid division by zero if (magnitude == 0.0) { rb_raise(rb_eZeroDivError, "Cannot normalize zero vector"); } // Normalize each component float inv_magnitude = (float)(1.0 / magnitude); for (uint16_t i = 0; i < ptr->dim; ++i) { values[i] *= inv_magnitude; } return self; // Return self for method chaining } |
#to_a ⇒ Object
Converts the embedding back to a Ruby array
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'ext/rag_embeddings/embedding.c', line 89 static VALUE (VALUE self) { *ptr; TypedData_Get_Struct(self, , &, ptr); // Create a new Ruby array with pre-allocated capacity VALUE arr = rb_ary_new_capa(ptr->dim); // Copy each float value to the Ruby array // Using rb_ary_store for better performance than rb_ary_push for (uint16_t i = 0; i < ptr->dim; ++i) { rb_ary_store(arr, i, DBL2NUM(ptr->values[i])); } return arr; } |