Class: Rababa::Diacritizer
- Inherits:
-
Object
- Object
- Rababa::Diacritizer
- Defined in:
- lib/rababa/diacritizer.rb
Instance Method Summary collapse
-
#combine_text_and_haraqat(vec_txt, vec_haraqat, encoding_mode = 'std') ⇒ Object
Combine: text + Haraqats –> diacritised arabic.
-
#diacritize_file(path) ⇒ Object
download data from relative path and diacritize line by line.
-
#diacritize_text(text) ⇒ Object
Diacritize single arabic strings.
-
#get_text_encoder ⇒ Object
Initialise text encoder from config params.
-
#initialize(onnx_model_path, config) ⇒ Diacritizer
constructor
A new instance of Diacritizer.
-
#predict_batch(batch_data) ⇒ Object
Call ONNX model with data transformed in batches.
-
#preprocess_text(text) ⇒ Object
preprocess text into indices.
Methods included from Reconcile
#build_pivot_map, #reconcile_strings
Methods included from Harakats
#basic_cleaners, #collapse_whitespace, #extract_haraqat, #extract_stack, #remove_diacritics, #valid_arabic_cleaners
Constructor Details
#initialize(onnx_model_path, config) ⇒ Diacritizer
Returns a new instance of Diacritizer.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/rababa/diacritizer.rb', line 19 def initialize(onnx_model_path, config) # load inference model from model_path @onnx_session = OnnxRuntime::InferenceSession.new(onnx_model_path) # load config @config = config @max_length = @config['max_len'] @batch_size = @config['batch_size'] # instantiate encoder's class @encoder = get_text_encoder @start_symbol_id = @encoder.start_symbol_id end |
Instance Method Details
#combine_text_and_haraqat(vec_txt, vec_haraqat, encoding_mode = 'std') ⇒ Object
Combine: text + Haraqats –> diacritised arabic
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# File 'lib/rababa/diacritizer.rb', line 120 def combine_text_and_haraqat(vec_txt, vec_haraqat, encoding_mode='std') if vec_txt.length != vec_haraqat.length raise Exception.new('haraqat.len != txt.len in \ Harakats::combine_text_and_haraqat') end text, i = '', 0 loop do txt = vec_txt[i] haraq = vec_haraqat[i] i += 1 break if (i == vec_txt.length) or \ (txt == @encoder.input_pad_id) if encoding_mode == 'std' s = @encoder.input_id_to_symbol[txt].to_s + \ @encoder.target_id_to_symbol[haraq].to_s elsif encoding_mode == 'escaped unicode' s = @encoder.input_id_to_symbol[txt].to_s + \ @utarget_symbol_to_id.utarget_id_to_symbol[haraq].to_s end text += s end text #.reverse end |
#diacritize_file(path) ⇒ Object
download data from relative path and diacritize line by line
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/rababa/diacritizer.rb', line 74 def diacritize_file(path) texts = [] File.open(path).each do |line| texts.push(line.chomp.strip()) end # process batches out_texts = [] idx = 0 loop do break if (idx+@batch_size > texts.length) originals = texts[idx..idx+@batch_size-1] src = originals.map.each{|t| preprocess_text(t)} lengths = src.map.each{|seq| seq.length} ort_inputs = {'src' => src, 'lengths' => lengths} preds = predict_batch(ort_inputs) out_texts += (0..@batch_size-1).map.each{|i| \ reconcile_strings(originals[i], combine_text_and_haraqat(src[i], preds[i])) } idx += @batch_size end # process rest of data loop do break if (idx >= texts.length) out_texts += [diacritize_text(texts[idx])] idx += 1 end out_texts end |
#diacritize_text(text) ⇒ Object
Diacritize single arabic strings
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# File 'lib/rababa/diacritizer.rb', line 55 def diacritize_text(text) """Diacritize single arabic strings""" text = text.strip() seq = preprocess_text(text) # initialize onnx computation # redondancy caused by batch processing of nnets ort_inputs = { 'src' => [seq]*@batch_size, 'lengths' => [seq.length]*@batch_size } # onnx predictions preds = predict_batch(ort_inputs)[0] reconcile_strings(text, combine_text_and_haraqat(seq, preds)) end |
#get_text_encoder ⇒ Object
Initialise text encoder from config params
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/rababa/diacritizer.rb', line 149 def get_text_encoder() if not ['basic_cleaners', 'valid_arabic_cleaners', nil].include? \ @config['text_cleaner'] raise Exception.new( \ 'cleaner is not known: '+@config['text_cleaner'].to_s) end if @config['text_encoder'] == 'BasicArabicEncoder' encoder = Encoders::BasicArabicEncoder.new(@config['text_cleaner']) elsif @config['text_encoder'] == 'ArabicEncoderWithStartSymbol' encoder = Encoders::ArabicEncoderWithStartSymbol.new(@config['text_cleaner']) else raise Exception.new(\ 'the text encoder is not found: '+@config['text_encoder'].to_s) end encoder end |
#predict_batch(batch_data) ⇒ Object
Call ONNX model with data transformed in batches
111 112 113 114 115 116 117 |
# File 'lib/rababa/diacritizer.rb', line 111 def predict_batch(batch_data) # onnx predictions predicts = @onnx_session.run(nil, batch_data) predicts = predicts[0].map.each{|p| \ p.map.each{|r| r.each_with_index.max[1]}} return predicts end |
#preprocess_text(text) ⇒ Object
preprocess text into indices
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# File 'lib/rababa/diacritizer.rb', line 36 def preprocess_text(text) # if (text.length > @max_length) # raise ValueError.new('text length larger than max_length') # end # hack in absence of preprocessing! if text.length > @max_length text = text[0..@max_length] warn('WARNING:: string cut length > #{@max_length},\n') warn('text:: '+text) end text = @encoder.clean(text) text = remove_diacritics(text) seq = @encoder.input_to_sequence(text) # correct expected length for vectors with 0's return seq+[0]*(@max_length-seq.length) end |