Class: State

Inherits:
Object
  • Object
show all
Includes:
QuantumVector
Defined in:
lib/quantum_ruby.rb

Overview

The State class represents a combination of qubits’ superpositions. They are stored a 2**n-dimensional column vector where N is the numbers of qubits entangled. State is usually produce after the applications of gates to a number of qubits and is continually passed forward through the quantum circuit until a measurement is made. State can be operated on via matrix multiplication or measurement(partial or otherwise).

Constant Summary

Constants included from QuantumVector

QuantumVector::PRECISION

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from QuantumVector

#==, #state

Constructor Details

#initialize(vector, *qubits) ⇒ State

Takes a column matrix representing N qubits and the corresponding superposition Values of the matrix must obey the normalization constraint Additional takes references to the actual qubits so that they can be updated in the future



206
207
208
209
210
211
212
# File 'lib/quantum_ruby.rb', line 206

def initialize(vector, *qubits)
  @vector = vector
  column_vector?
  normalized?

  @qubits = qubits.flatten.tap { |i| i.each { |j| j.entangled = true } }
end

Instance Attribute Details

#qubitsObject (readonly)

Returns the value of attribute qubits.



199
200
201
# File 'lib/quantum_ruby.rb', line 199

def qubits
  @qubits
end

#vectorObject (readonly)

Returns the value of attribute vector.



198
199
200
# File 'lib/quantum_ruby.rb', line 198

def vector
  @vector
end

Instance Method Details

#measureObject

Returns an array of bits representing the final state of all entangled qubits All qubits are written with their new state and all superposition information is lost



217
218
219
# File 'lib/quantum_ruby.rb', line 217

def measure
  measure_partial(@qubits)
end

#measure_partial(*qubit) ⇒ Object

Takes an array of qubits for which a measurement should be made Returns an array of bits representing the final state of the requested qubits All others qubits are written with a normalized state and all superposition information is lost



225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# File 'lib/quantum_ruby.rb', line 225

def measure_partial(*qubit)
  # find location of our desired qubit(s)
  qubit_ids = qubit.map { |i| @qubits.find_index { |j| j.hash == i .hash } }.sort

  # collect probabilities for qubit(s) states
  sub_result = @vector.to_a.flatten.each_with_index.group_by do |_probability, index|
    qubit_ids.map do |id|
      index.to_s(2).rjust(size, '0')[id]
    end.join
  end

  # calculate final probabilities for qubit(s) state
  probabilities = sub_result.sort.to_h.transform_values { |v| v.reduce(0) { |i, p| i + p[0].abs2 } }.values

  # determine 'winner'
  acc = 0
  out = nil
  secret = rand
  probabilities.each_with_index do |probability, index|
    acc += probability
    if acc > secret
      out = index
      break
    end
  end

  # Renormalize
  squared_sum_mag = Math.sqrt(probabilities[out])
  out = out.to_s(2).rjust(qubit.length, '0')
  new_state = sub_result.fetch(out).map { |i| i[0] / squared_sum_mag }

  # Update each qubit
  @qubits.each_with_index do |q, i|
    q.entangled = false
    if (index = qubit_ids.find_index(i))
      q.send(:vector=, Array.new(2, 0).tap { |vector| vector[out[index].to_i] = 1 })
    else
      q.send(:vector=, new_state)
    end
  end

  # State should no longer be used
  out.split('').map(&:to_i)
end