Top Level Namespace
- Includes:
- PSPLINE
Defined Under Namespace
Modules: PSPLINE Classes: Array
Constant Summary collapse
- Ad =
puts “# Interpolation of the Bessel function”
Data points
[[-4.0, 1.34095e-3],[-3.6, 2.98189e-3],[-3.2, 6.62420e-3],[-2.8, 1.46827e-2], [-2.4, 3.23838e-2],[-2.0, 7.06508e-2],[-1.6, 1.50527e-1],[-1.2, 3.05020e-1], [-0.8, 5.59055e-1],[-0.4, 8.55639e-1],[ 0.4, 8.55639e-1],[ 0.8, 5.59055e-1], [ 1.2, 3.05020e-1],[ 1.6, 1.50527e-1],[ 2.0, 7.06508e-2],[ 2.4, 3.23838e-2], [ 2.8, 1.46827e-2],[ 3.2, 6.62420e-3],[ 3.6, 2.98189e-3],[ 4.0, 1.34095e-3]]
- Jbn =
ARGV[0].to_i
- Dp =
10- Bs =
Bspline.new(XY, 12, 5, 1)
- C =
Additional data points
[ [0.0, 1.0],[0.0, 0.0],[6.283185, 1.0],[6.283185, 0.0] ]
- XY =
puts “# Interpolation of the Jacobi function”
[ [0, 4.0, 0.0],[1, 3.0, 3.0],[2, 0.0, 4.0],[3,-3.0, 3.0], [4,-4.0, 0.0],[5,-3.0,-3.0],[6, 0.0,-4.0],[7, 3.0,-3.0], [8, 4.0, 0.0] ]
- D =
[1, 2, 1, 2]
- Bd =
[[-4.0, -4.0],[-3.6, -3.6],[-3.2, -3.2],[-2.8, -2.8], [-2.4, -2.4],[-2.0, -2.0],[-1.6, -1.6],[-1.2, -1.2], [-0.8, -0.8],[-0.4, -0.4],[ 0.4, 0.4],[ 0.8, 0.8], [ 1.2, 1.2],[ 1.6, 1.6],[ 2.0, 2.0],[ 2.4, 2.4], [ 2.8, 2.8],[ 3.2, 3.2],[ 3.6, 3.6],[ 4.0, 4.0]]
- As =
Bspline.new(Ad, 20, 5)
- Ps =
Pspline.new(XYZ, [S, T], nn, jj, ss)
- X =
[ 0, 0, 0, 1, 1, 1, 1, 0, 0, 0 ]
- Y =
[ [ 4.0, 0.0],[ 3.0, 3.0],[ 0.0, 4.0],[-3.0, 3.0], [-4.0, 0.0],[-3.0,-3.0],[ 0.0,-4.0],[ 3.0,-3.0] ]
- Qs =
Bspline.new(XY, 16, 9, 1)
- Rs =
Pspline.new(XYZ, [S, T], nn, jj, ss)
- Sp =
Bspline.new(XY, n, j, s)
- S =
[0, 1, 2, 3, 4]
- T =
[0, 1, 2, 3, 4, 5]
- XYZ =
[ [[ 0.0, 5.0, 9.0],[ 0.0, 5.0, 6.0],[ 0.0, 0.5, 6.0],[ 0.0, 0.5, 2.0],[ 0.0, 3.0, 1.0],[ 0.0, 3.0, 0.0]], [[ 5.0,-2.5, 6.5],[ 5.0,-2.5, 3.5],[ 0.5,-0.25,5.75],[0.5,-0.25,1.75],[3.0,-1.5,-0.5],[ 3.0,-1.5,-1.5]], [[ 0.0,-5.0, 9.0],[ 0.0,-5.0, 6.0],[ 0.0,-0.5, 6.0],[ 0.0,-0.5, 2.0],[ 0.0,-3.0, 1.0],[ 0.0,-3.0, 0.0]], [[-5.0, 2.5,11.5],[-5.0, 2.5, 8.5],[-0.5,0.25,6.25],[-0.5,0.25,2.25],[-3.0, 1.5, 2.5],[-3.0, 1.5, 1.5]] ]
- N =
Rs.plot(vv, Dp, [Jbn,0]) do |a, b| if (a[1] == 0.0) printf("%.3f %.3f % .7f % .7f %10.7f\n", a[0], a[1], b[0], b[1], b[2]) end end
- Sint =
Qs.line_integral(lambda{|x,y|Math.sqrt(x*x+y*y)*0.5}, vv)