Class: Decoymaker

Inherits:
Object
  • Object
show all
Defined in:
ext/decoymaker/decoymaker.c

Class Method Summary collapse

Class Method Details

.make_decoys(input_file_in, db_length_in, output_file_in, prefix_string_in) ⇒ Object



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# File 'ext/decoymaker/decoymaker.c', line 40

static VALUE decoymaker_make_decoys(VALUE self,VALUE input_file_in,
  VALUE db_length_in,VALUE output_file_in,VALUE prefix_string_in) 
{

  char *infile = StringValueCStr(input_file_in);
  long sequences_to_generate = NUM2INT(db_length_in);
  char * outfile = StringValueCStr(output_file_in);
  char *prefix_string = StringValueCStr(prefix_string_in);

  char line[MAX_LINE_LENGTH];      
  // char settings_line[60][70];

  char *p,**index;
  
  char one_sequence[MAX_SEQUENCE_LENGTH];
  char random_sequence[(int)(MAX_SEQUENCE_LENGTH*1.5)];
  char random_sequence_output[(int)(MAX_SEQUENCE_LENGTH*1.5)];
  char *temp_sequence;
  int a;
  FILE *inp, *outp;

  long i, j, k, l, n, n_sequences, protein;
  long MP[21][MAX_SEQUENCE_LENGTH];
  long measured_aa_freq[21], generated_aa_freq[21], measured_pl_sum=0, generated_pl_sum=0;
  long row_sum[MAX_SEQUENCE_LENGTH],partial_sum;
  long one_index,pl;
  double x;

  /* scanning sequence database */

  if ((inp = fopen(infile, "r"))==NULL) {
    printf("error opening sequence database %s\n",infile);return -1;
  }

  long total_sequence_len=0;
  n=0;

  while (fgets(line, MAX_LINE_LENGTH, inp) != NULL) {
    total_sequence_len+=strlen(line);

    // printf("%ld\n",i);fflush(stdout);
    if (line[0]=='>') { n++; } 
  }
    
  n_sequences=n;


  /* reading sequence database */      
  
  temp_sequence=(char*)calloc(sizeof(char),MAX_SEQUENCE_LENGTH);

  char *sequence_block=(char*)malloc(sizeof(char)*(total_sequence_len+2));

  index=(char**)malloc(sizeof(char*)*n_sequences);
  index[0]=sequence_block; /* set first index pointer to beginning of first database sequence */
  
  if ((inp = fopen(infile, "r"))==NULL) {
    printf("error opening sequence database %s\n",infile);
    return -1;
  }

  n=-1;
  strcpy(temp_sequence,"\0");
  
  while (fgets(line, MAX_LINE_LENGTH, inp) != NULL)
  {
    RemoveSpaces(line);

    if (strcmp(line,"\n")==0) { // Skips blank lines
      continue;
    }

    if (line[0]=='>') { 
      if (n>=0) { 

        strcpy(index[n],temp_sequence);
        n++; 
        index[n]=index[n-1]+sizeof(char)*strlen(temp_sequence);
        strcpy(temp_sequence,"\0");

      }
      else 
      {
        n++;
        strcpy(temp_sequence,"\0");
      }
    }
    else 
    {
      if ( (strlen(temp_sequence)+strlen(line))>=MAX_SEQUENCE_LENGTH ) { 
        continue;
      } 
      strncat(temp_sequence,line,strlen(line)-1);
    }   
  }

  strcpy(index[n],temp_sequence);

  fclose(inp);

  n_sequences=n+1;

  // printf("done [read %li sequences (%li amino acids)]\n",n_sequences,(int)(index[n_sequences-1]-index[0])/sizeof(char)+strlen(temp_sequence));fflush(stdout);

  // measured_pl_sum=(int)(index[n_sequences-1]-index[0])/sizeof(char)+strlen(temp_sequence);





  /* generating Markov probabilities */

  // printf("generating Markov probability matrix...");
  // fflush(stdout);

  srand(time(0)); /* replace with constant to re-generate identical random databases */

  for(i=0;i<MAX_SEQUENCE_LENGTH;i++) {
    for(j=0;j<=20;j++) {
      MP[j][i]=0;
    }
  }
  for(j=0;j<=20;j++) {
    measured_aa_freq[j]=0;
    generated_aa_freq[j]=0;
  }


  for(protein=0;protein<n_sequences;protein++)
  {
    if (protein<(n_sequences-1)) 
    {
      long len_one_seq = (index[protein+1]-index[protein])/sizeof(char);
      if ( len_one_seq > MAX_SEQUENCE_LENGTH ){
        printf("Seq is longer than max len \n");fflush(stdout);
        len_one_seq=MAX_SEQUENCE_LENGTH;
      }
      strncpy(one_sequence,index[protein],len_one_seq);

      one_sequence[len_one_seq]='\0'; // NULL terminate the string

    } else { 
      strcpy(one_sequence,index[protein]);
    }

    pl=strlen(one_sequence);
    n=1;
    one_index=0;

    for(i=0;i<pl;i++)
    {
      if(strpbrk(NOT_AMINO_ACIDS,(const char *)&one_sequence)==NULL)
      {
        if ( strchr(AMINO_ACIDS,one_sequence[i])==NULL)
        {
          printf("Unknown amino acid %c",one_sequence[i]);                
        } else {
          a=20-strlen(strchr(AMINO_ACIDS,one_sequence[i])); // current amino acid
          MP[a][i]++;
          measured_aa_freq[a]++;
        }
      } else {
        a=floor(20*(float)rand()/RAND_MAX);
        MP[a][i]++; 
        measured_aa_freq[a]++;
      } // replace B, X, Z etc. with random amino acid to preserve size distribution
    }
    MP[20][pl]++;
    measured_aa_freq[20]++; // MP[20][n] is the number of sequences of length n in the database 
  }  

  for(i=0;i<MAX_SEQUENCE_LENGTH;i++){
     row_sum[i]=0;
  }
  
  for(i=0;i<MAX_SEQUENCE_LENGTH;i++){ 
    for(j=0;j<=20;j++){ 
      row_sum[i]+=MP[j][i];
    }
  }



  /* generate random protein sequences through Markov chain */


  if ((outp = fopen(outfile, "w"))==NULL) {
    printf("error opening output file %s\n",outfile); 
    return -1;
  }

  for(protein=0;protein<sequences_to_generate;protein++)
  {
      
    i=0; j=0;
    while (1)
    {
      x=(double)row_sum[j]*((double)rand()/RAND_MAX);
      partial_sum=MP[0][j]; i=1;
       
      while (partial_sum<x) {partial_sum+=MP[i][j]; i++;}

      if (j>=MAX_SEQUENCE_LENGTH) { i=21; }/* terminate when sequence has reached MAX_SEQUENCE_LENGTH */
     
      if (i<21)
      {
        random_sequence[j]=AMINO_ACIDS[i-1];j++;generated_aa_freq[i-1]++;
      } else { /* i==21, i.e. protein sequence terminated */ 
        k=0; 
        generated_aa_freq[20]++; 
        generated_pl_sum+=j;
        
        for(l=0;l<j;l++) 
        {
          random_sequence_output[k]=random_sequence[l]; k++;
          if (!((k+1)%61))
          {
            random_sequence_output[k]='\n'; k++;
          }
        }

        random_sequence_output[k]='\0';
        if (!(k%61)) random_sequence_output[k-1]='\0'; /* remove extra newline for sequence length multiple of 60 */
        fprintf(outp,">%srp%li\n%s\n",prefix_string,protein,random_sequence_output);
        break;
      }
    }
  }
  
  fclose(outp);

  
  // printf("done (wrote %li random protein sequences to %s)\n",sequences_to_generate,outfile);

  k=0;l=0;
  for(i=0;i<=20;i++) {k+=measured_aa_freq[i];l+=generated_aa_freq[i];}

  // printf("<average sequence length in %s> = %f\n<average sequence length in %s> = %f\n",infile,measured_pl_sum/(float)n_sequences,outfile,generated_pl_sum/(float)sequences_to_generate);

  return 0;

}