Module: Primes::Utils
- Defined in:
- lib/primes/utils.rb,
lib/primes/utils/version.rb
Constant Summary collapse
- VERSION =
"1.0.0"
Instance Method Summary collapse
-
#factors(p = 13) ⇒ Object
(also: #prime_division)
P13 is default prime generator here.
-
#prime? ⇒ Boolean
use pure ruby versions for platforms without cli command ‘factor’.
-
#primemr?(k = 20) ⇒ Boolean
increase k for more reliability.
-
#primenth(p = 11) ⇒ Object
(also: #nthprime)
return value of nth prime.
- #primes(start_num = 0) ⇒ Object
Instance Method Details
#factors(p = 13) ⇒ Object Also known as: prime_division
P13 is default prime generator here
16 17 18 19 |
# File 'lib/primes/utils.rb', line 16 def factors(p=0) # p is unused dummy variable for method consistency factors = `factor #{self.abs}`.split(' ')[1..-1].map {|i| i.to_i} h = Hash.new(0); factors.each {|f| h[f] +=1}; h.to_a.sort end |
#prime? ⇒ Boolean
use pure ruby versions for platforms without cli command ‘factor’
25 26 27 |
# File 'lib/primes/utils.rb', line 25 def prime? `factor #{self.abs}`.split(' ').size == 2 end |
#primemr?(k = 20) ⇒ Boolean
increase k for more reliability
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'lib/primes/utils.rb', line 220 def primemr?(k=20) # increase k for more reliability n = self.abs return true if n == 2 or n == 3 return false if n % 6 != 1 && n % 6 != 5 or n == 1 d = n - 1 s = 0 (d >>= 1; s += 1) while d.even? k.times do a = 2 + rand(n-4) x = a.to_bn.mod_exp(d,n) #x = (a**d) mod n next if x == 1 or x == n-1 (s-1).times do x = x.mod_exp(2,n) #x = (x**2) mod n return false if x == 1 break if x == n-1 end return false if x != n-1 end true # with high probability end |
#primenth(p = 11) ⇒ Object Also known as: nthprime
return value of nth prime
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'lib/primes/utils.rb', line 94 def primenth(p=11) # return value of nth prime # Return value of nth prime # Uses sozP11 Sieve of Zakiya (SoZ) as default prime sieve seeds = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] primes = [] n = self.abs # the desired nth prime return seeds[n-1] if n < 14 numb = 22*n # approx value need to check primes up to # find primes <= Pn, compute modPn then Prime Gen residues for Pn primes = seeds[0..seeds.index(p)]; mod = primes.reduce(:*) residues=[1]; 3.step(mod,2) {|i| residues << i if mod.gcd(i) == 1} residues << mod+1; rescnt = residues.size-1 num = numb-1 | 1 # if N even number then subtract 1 k=num/mod; modk = mod*k; r=1 # kth residue group; base num value while num >= modk+residues[r]; r += 1 end # compute extra prms size maxprms = k*rescnt + r-1 # max size of prime candidates array prms=Array.new(maxprms,true) # set all prime candidates to True # array of residues offsets to compute nonprimes positions in prms pos =[]; rescnt.times {|i| pos[residues[i]] = i-1}; # sieve (SoZ) to eliminate nonprimes from prms sqrtN = Math.sqrt(num).to_i modk,r,k=0,0,0 prms.each do |prime| r +=1; if r > rescnt; r=1; modk +=mod; k +=1 end next unless prime res_r = residues[r] prime = modk + res_r break if prime > sqrtN prmstep = prime * rescnt residues[1..-1].each do |ri| # compute (prime * (modk + ri)) position index in prms kk,rr = (res_r * ri).divmod mod # residues product res[group|track] nonprm = (k*(prime + ri) + kk)*rescnt + pos[rr] while nonprm < maxprms; prms[nonprm]=nil; nonprm +=prmstep end end end # the prms array now has all the primes positions for primes r1..N # find the nth prime and output it count = primes.size modk,r=0,0 prms.each do |prime| r +=1; if r > rescnt; r=1; modk +=mod end count +=1 if prime return modk+residues[r] if count == n end end |
#primes(start_num = 0) ⇒ Object
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# File 'lib/primes/utils.rb', line 149 def primes(start_num=0) # Find primes between a number range: end_num - start_num # Use as: end_num.primes(start_num) or end_num.primes # If start_num omitted, will find all primes <= end_num # If start_num > self, values are switched to continue # Output is an array of the primes within the given range # To find count of these primes do: end_num.primes(start_num).size # This method uses the P13 Strictly Prime (SP) Prime Generator num = self.abs; start_num = start_num.abs num, start_num = start_num, num if start_num > num primes = [2,3,5,7,11,13] # P13 excluded primes lists return primes.select {|p| p >= start_num && p <= num} if num <= 13 mod = 30030 # P13 modulus value 2*3*5*7*11*13 residues=[1]; 17.step(mod,2) {|i| residues << i if mod.gcd(i) == 1} rescnt = residues.size # number of residues residues << mod+1 # to make algorithm easier num = num-1 | 1 # if N even number then subtract 1 k=num/mod; modk = mod*k; r=1 # kth residue group; base num value while num >= modk+residues[r]; r += 1 end # compute extra prms size maxprms = k*rescnt + r-1 # max size of prime candidates array prms=Array.new(maxprms,true) # set all prime candidates to True # hash of residues offsets to compute nonprimes positions in prms pos =[]; rescnt.times {|i| pos[residues[i]] = i-1}; # sieve (SoZ) to eliminate nonprimes from prms sqrtN= Math.sqrt(num).to_i modk,r,k=0,0,0 prms.each do |prime| r +=1; if r > rescnt; r=1; modk +=mod; k +=1 end next unless prime res_r = residues[r] prime = modk + res_r break if prime > sqrtN prmstep = prime * rescnt residues[1..-1].each do |ri| # compute (prime * (modk + ri)) position index in prms kk,rr = (res_r * ri).divmod mod # residues product res[group|track] nonprm = (k*(prime + ri) + kk)*rescnt + pos[rr] # 1st prime multiple while nonprm < maxprms; prms[nonprm]=nil; nonprm +=prmstep end end end # the prms array now has all the primes positions for primes r1..N primes = start_num <= 13 ? primes.drop_while {|p| p < start_num} : [] k = start_num / mod modk = mod*k m = rescnt*k r = 0 while m < maxprms r +=1; if r > rescnt; r=1; modk +=mod end if prms[m] prime = modk + residues[r] primes << prime if prime >= start_num end m +=1 end primes end |