Class: Polars::LazyFrame
- Inherits:
-
Object
- Object
- Polars::LazyFrame
- Defined in:
- lib/polars/lazy_frame.rb
Overview
Representation of a Lazy computation graph/query against a DataFrame.
Class Method Summary collapse
-
.read_json(file) ⇒ LazyFrame
Read a logical plan from a JSON file to construct a LazyFrame.
Instance Method Summary collapse
-
#bottom_k(k, by:, reverse: false) ⇒ LazyFrame
Return the
ksmallest rows. -
#cache ⇒ LazyFrame
Cache the result once the execution of the physical plan hits this node.
-
#cast(dtypes, strict: true) ⇒ LazyFrame
Cast LazyFrame column(s) to the specified dtype(s).
-
#clear(n = 0) ⇒ LazyFrame
(also: #cleared)
Create an empty copy of the current LazyFrame.
-
#collect(type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, string_cache: false, no_optimization: false, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false, _eager: false) ⇒ DataFrame
Collect into a DataFrame.
-
#collect_schema ⇒ Schema
Resolve the schema of this LazyFrame.
-
#columns ⇒ Array
Get or set column names.
-
#count ⇒ LazyFrame
Return the number of non-null elements for each column.
-
#describe_optimized_plan(type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false) ⇒ String
Create a string representation of the optimized query plan.
-
#describe_plan ⇒ String
Create a string representation of the unoptimized query plan.
-
#drop(*columns, strict: true) ⇒ LazyFrame
Remove one or multiple columns from a DataFrame.
-
#drop_nans(subset: nil) ⇒ LazyFrame
Drop all rows that contain one or more NaN values.
-
#drop_nulls(subset: nil) ⇒ LazyFrame
Drop all rows that contain one or more null values.
-
#dtypes ⇒ Array
Get dtypes of columns in LazyFrame.
-
#explode(columns, *more_columns) ⇒ LazyFrame
Explode lists to long format.
-
#fetch(n_rows = 500, **kwargs) ⇒ DataFrame
Collect a small number of rows for debugging purposes.
-
#fill_nan(fill_value) ⇒ LazyFrame
Fill floating point NaN values.
-
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: nil) ⇒ LazyFrame
Fill null values using the specified value or strategy.
-
#filter(predicate) ⇒ LazyFrame
Filter the rows in the DataFrame based on a predicate expression.
-
#first ⇒ LazyFrame
Get the first row of the DataFrame.
-
#gather_every(n) ⇒ LazyFrame
(also: #take_every)
Take every nth row in the LazyFrame and return as a new LazyFrame.
-
#group_by(*by, maintain_order: false, **named_by) ⇒ LazyGroupBy
(also: #groupby, #group)
Start a group by operation.
-
#group_by_dynamic(index_column, every:, period: nil, offset: nil, truncate: nil, include_boundaries: false, closed: "left", label: "left", by: nil, start_by: "window") ⇒ DataFrame
(also: #groupby_dynamic)
Group based on a time value (or index value of type
:i32,:i64). -
#head(n = 5) ⇒ LazyFrame
Get the first
nrows. -
#include?(key) ⇒ Boolean
Check if LazyFrame includes key.
-
#initialize(data = nil, schema: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) ⇒ LazyFrame
constructor
Create a new LazyFrame.
-
#interpolate ⇒ LazyFrame
Interpolate intermediate values.
-
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", join_nulls: false, allow_parallel: true, force_parallel: false, coalesce: nil, maintain_order: nil) ⇒ LazyFrame
Add a join operation to the Logical Plan.
-
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true) ⇒ LazyFrame
Perform an asof join.
-
#join_where(other, *predicates, suffix: "_right") ⇒ LazyFrame
Perform a join based on one or multiple (in)equality predicates.
-
#last ⇒ LazyFrame
Get the last row of the DataFrame.
-
#lazy ⇒ LazyFrame
Return lazy representation, i.e.
-
#limit(n = 5) ⇒ LazyFrame
Get the first
nrows. -
#max ⇒ LazyFrame
Aggregate the columns in the DataFrame to their maximum value.
-
#mean ⇒ LazyFrame
Aggregate the columns in the DataFrame to their mean value.
-
#median ⇒ LazyFrame
Aggregate the columns in the DataFrame to their median value.
-
#merge_sorted(other, key) ⇒ LazyFrame
Take two sorted DataFrames and merge them by the sorted key.
-
#min ⇒ LazyFrame
Aggregate the columns in the DataFrame to their minimum value.
-
#null_count ⇒ LazyFrame
Aggregate the columns in the LazyFrame as the sum of their null value count.
-
#pipe(func, *args, **kwargs, &block) ⇒ LazyFrame
Offers a structured way to apply a sequence of user-defined functions (UDFs).
-
#quantile(quantile, interpolation: "nearest") ⇒ LazyFrame
Aggregate the columns in the DataFrame to their quantile value.
-
#remove(*predicates, **constraints) ⇒ LazyFrame
Remove rows, dropping those that match the given predicate expression(s).
-
#rename(mapping, strict: true) ⇒ LazyFrame
Rename column names.
-
#reverse ⇒ LazyFrame
Reverse the DataFrame.
-
#rolling(index_column:, period:, offset: nil, closed: "right", by: nil) ⇒ LazyFrame
(also: #group_by_rolling, #groupby_rolling)
Create rolling groups based on a time column.
-
#schema ⇒ Hash
Get the schema.
-
#select(*exprs, **named_exprs) ⇒ LazyFrame
Select columns from this DataFrame.
-
#select_seq(*exprs, **named_exprs) ⇒ LazyFrame
Select columns from this LazyFrame.
-
#set_sorted(column, descending: false) ⇒ LazyFrame
Flag a column as sorted.
-
#shift(n, fill_value: nil) ⇒ LazyFrame
Shift the values by a given period.
-
#shift_and_fill(periods, fill_value) ⇒ LazyFrame
Shift the values by a given period and fill the resulting null values.
-
#sink_csv(path, include_bom: false, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to a CSV file.
-
#sink_ipc(path, compression: "zstd", maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to an IPC file.
-
#sink_ndjson(path, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to an NDJSON file.
-
#sink_parquet(path, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_pagesize_limit: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, no_optimization: false, slice_pushdown: true, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Persists a LazyFrame at the provided path.
-
#slice(offset, length = nil) ⇒ LazyFrame
Get a slice of this DataFrame.
-
#sort(by, *more_by, reverse: false, nulls_last: false, maintain_order: false, multithreaded: true) ⇒ LazyFrame
Sort the DataFrame.
-
#sql(query, table_name: "self") ⇒ Expr
Execute a SQL query against the LazyFrame.
-
#std(ddof: 1) ⇒ LazyFrame
Aggregate the columns in the DataFrame to their standard deviation value.
-
#sum ⇒ LazyFrame
Aggregate the columns in the DataFrame to their sum value.
-
#tail(n = 5) ⇒ LazyFrame
Get the last
nrows. -
#to_s ⇒ String
Returns a string representing the LazyFrame.
-
#top_k(k, by:, reverse: false) ⇒ LazyFrame
Return the
klargest rows. -
#unique(maintain_order: true, subset: nil, keep: "first") ⇒ LazyFrame
Drop duplicate rows from this DataFrame.
-
#unnest(columns, *more_columns) ⇒ LazyFrame
Decompose a struct into its fields.
-
#unpivot(on, index: nil, variable_name: nil, value_name: nil, streamable: true) ⇒ LazyFrame
(also: #melt)
Unpivot a DataFrame from wide to long format.
-
#update(other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left") ⇒ LazyFrame
Update the values in this
LazyFramewith the values inother. -
#var(ddof: 1) ⇒ LazyFrame
Aggregate the columns in the DataFrame to their variance value.
-
#width ⇒ Integer
Get the width of the LazyFrame.
-
#with_column(column) ⇒ LazyFrame
Add or overwrite column in a DataFrame.
-
#with_columns(*exprs, **named_exprs) ⇒ LazyFrame
Add or overwrite multiple columns in a DataFrame.
-
#with_columns_seq(*exprs, **named_exprs) ⇒ LazyFrame
Add columns to this LazyFrame.
-
#with_context(other) ⇒ LazyFrame
Add an external context to the computation graph.
-
#with_row_index(name: "index", offset: 0) ⇒ LazyFrame
(also: #with_row_count)
Add a column at index 0 that counts the rows.
-
#write_json(file) ⇒ nil
Write the logical plan of this LazyFrame to a file or string in JSON format.
Constructor Details
#initialize(data = nil, schema: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) ⇒ LazyFrame
Create a new LazyFrame.
8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
# File 'lib/polars/lazy_frame.rb', line 8 def initialize(data = nil, schema: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false) self._ldf = ( DataFrame.new( data, schema: schema, schema_overrides: schema_overrides, orient: orient, infer_schema_length: infer_schema_length, nan_to_null: nan_to_null ) .lazy ._ldf ) end |
Class Method Details
.read_json(file) ⇒ LazyFrame
Read a logical plan from a JSON file to construct a LazyFrame.
39 40 41 42 43 44 45 |
# File 'lib/polars/lazy_frame.rb', line 39 def self.read_json(file) if Utils.pathlike?(file) file = Utils.normalize_filepath(file) end Utils.wrap_ldf(RbLazyFrame.read_json(file)) end |
Instance Method Details
#bottom_k(k, by:, reverse: false) ⇒ LazyFrame
Return the k smallest rows.
Non-null elements are always preferred over null elements, regardless of
the value of reverse. The output is not guaranteed to be in any
particular order, call :func:sort after this function if you wish the
output to be sorted.
476 477 478 479 480 481 482 483 484 |
# File 'lib/polars/lazy_frame.rb', line 476 def bottom_k( k, by:, reverse: false ) by = Utils.parse_into_list_of_expressions(by) reverse = Utils.extend_bool(reverse, by.length, "reverse", "by") _from_rbldf(_ldf.bottom_k(k, by, reverse)) end |
#cache ⇒ LazyFrame
Cache the result once the execution of the physical plan hits this node.
1224 1225 1226 |
# File 'lib/polars/lazy_frame.rb', line 1224 def cache _from_rbldf(_ldf.cache) end |
#cast(dtypes, strict: true) ⇒ LazyFrame
Cast LazyFrame column(s) to the specified dtype(s).
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 |
# File 'lib/polars/lazy_frame.rb', line 1277 def cast(dtypes, strict: true) if !dtypes.is_a?(Hash) return _from_rbldf(_ldf.cast_all(dtypes, strict)) end cast_map = {} dtypes.each do |c, dtype| dtype = Utils.parse_into_dtype(dtype) cast_map.merge!( c.is_a?(::String) ? {c => dtype} : Utils.(self, c).to_h { |x| [x, dtype] } ) end _from_rbldf(_ldf.cast(cast_map, strict)) end |
#clear(n = 0) ⇒ LazyFrame Also known as: cleared
Create an empty copy of the current LazyFrame.
The copy has an identical schema but no data.
1329 1330 1331 |
# File 'lib/polars/lazy_frame.rb', line 1329 def clear(n = 0) DataFrame.new(schema: schema).clear(n).lazy end |
#collect(type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, string_cache: false, no_optimization: false, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false, _eager: false) ⇒ DataFrame
Collect into a DataFrame.
Note: use #fetch if you want to run your query on the first n rows
only. This can be a huge time saver in debugging queries.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
# File 'lib/polars/lazy_frame.rb', line 538 def collect( type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, string_cache: false, no_optimization: false, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false, _eager: false ) if no_optimization predicate_pushdown = false projection_pushdown = false slice_pushdown = false common_subplan_elimination = false comm_subexpr_elim = false end if allow_streaming common_subplan_elimination = false end ldf = _ldf.optimization_toggle( type_coercion, predicate_pushdown, projection_pushdown, simplify_expression, slice_pushdown, common_subplan_elimination, comm_subexpr_elim, allow_streaming, _eager ) Utils.wrap_df(ldf.collect) end |
#collect_schema ⇒ Schema
Resolve the schema of this LazyFrame.
608 609 610 |
# File 'lib/polars/lazy_frame.rb', line 608 def collect_schema Schema.new(_ldf.collect_schema, check_dtypes: false) end |
#columns ⇒ Array
Get or set column names.
65 66 67 |
# File 'lib/polars/lazy_frame.rb', line 65 def columns _ldf.collect_schema.keys end |
#count ⇒ LazyFrame
Return the number of non-null elements for each column.
4431 4432 4433 |
# File 'lib/polars/lazy_frame.rb', line 4431 def count _from_rbldf(_ldf.count) end |
#describe_optimized_plan(type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false) ⇒ String
Create a string representation of the optimized query plan.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# File 'lib/polars/lazy_frame.rb', line 199 def describe_optimized_plan( type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, common_subplan_elimination: true, comm_subexpr_elim: true, allow_streaming: false ) ldf = _ldf.optimization_toggle( type_coercion, predicate_pushdown, projection_pushdown, simplify_expression, slice_pushdown, common_subplan_elimination, comm_subexpr_elim, allow_streaming, false ) ldf.describe_optimized_plan end |
#describe_plan ⇒ String
Create a string representation of the unoptimized query plan.
192 193 194 |
# File 'lib/polars/lazy_frame.rb', line 192 def describe_plan _ldf.describe_plan end |
#drop(*columns, strict: true) ⇒ LazyFrame
Remove one or multiple columns from a DataFrame.
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 |
# File 'lib/polars/lazy_frame.rb', line 2934 def drop(*columns, strict: true) selectors = [] columns.each do |c| if c.is_a?(Enumerable) selectors += c else selectors += [c] end end drop_cols = Utils.parse_list_into_selector(selectors, strict: strict) _from_rbldf(_ldf.drop(drop_cols._rbselector)) end |
#drop_nans(subset: nil) ⇒ LazyFrame
Drop all rows that contain one or more NaN values.
The original order of the remaining rows is preserved.
3891 3892 3893 3894 3895 3896 3897 |
# File 'lib/polars/lazy_frame.rb', line 3891 def drop_nans(subset: nil) selector_subset = nil if !subset.nil? selector_subset = Utils.parse_list_into_selector(subset)._rbselector end _from_rbldf(_ldf.drop_nans(selector_subset)) end |
#drop_nulls(subset: nil) ⇒ LazyFrame
Drop all rows that contain one or more null values.
The original order of the remaining rows is preserved.
3940 3941 3942 3943 3944 3945 3946 |
# File 'lib/polars/lazy_frame.rb', line 3940 def drop_nulls(subset: nil) selector_subset = nil if !subset.nil? selector_subset = Utils.parse_list_into_selector(subset)._rbselector end _from_rbldf(_ldf.drop_nulls(selector_subset)) end |
#dtypes ⇒ Array
Get dtypes of columns in LazyFrame.
83 84 85 |
# File 'lib/polars/lazy_frame.rb', line 83 def dtypes _ldf.collect_schema.values end |
#explode(columns, *more_columns) ⇒ LazyFrame
Explode lists to long format.
3773 3774 3775 3776 3777 3778 |
# File 'lib/polars/lazy_frame.rb', line 3773 def explode(columns, *more_columns) subset = Utils.parse_list_into_selector(columns) | Utils.parse_list_into_selector( more_columns ) _from_rbldf(_ldf.explode(subset._rbselector)) end |
#fetch(n_rows = 500, **kwargs) ⇒ DataFrame
Collect a small number of rows for debugging purposes.
Fetch is like a #collect operation, but it overwrites the number of rows read by every scan operation. This is a utility that helps debug a query on a smaller number of rows.
Note that the fetch does not guarantee the final number of rows in the DataFrame. Filter, join operations and a lower number of rows available in the scanned file influence the final number of rows.
1197 1198 1199 |
# File 'lib/polars/lazy_frame.rb', line 1197 def fetch(n_rows = 500, **kwargs) head(n_rows).collect(**kwargs) end |
#fill_nan(fill_value) ⇒ LazyFrame
Note that floating point NaN (Not a Number) are not missing values!
To replace missing values, use fill_null instead.
Fill floating point NaN values.
3522 3523 3524 3525 3526 3527 |
# File 'lib/polars/lazy_frame.rb', line 3522 def fill_nan(fill_value) if !fill_value.is_a?(Expr) fill_value = F.lit(fill_value) end _from_rbldf(_ldf.fill_nan(fill_value._rbexpr)) end |
#fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: nil) ⇒ LazyFrame
Fill null values using the specified value or strategy.
3487 3488 3489 |
# File 'lib/polars/lazy_frame.rb', line 3487 def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: nil) select(Polars.all.fill_null(value, strategy: strategy, limit: limit)) end |
#filter(predicate) ⇒ LazyFrame
Filter the rows in the DataFrame based on a predicate expression.
1372 1373 1374 1375 1376 1377 1378 |
# File 'lib/polars/lazy_frame.rb', line 1372 def filter(predicate) _from_rbldf( _ldf.filter( Utils.parse_into_expression(predicate, str_as_lit: false) ) ) end |
#first ⇒ LazyFrame
Get the first row of the DataFrame.
3355 3356 3357 |
# File 'lib/polars/lazy_frame.rb', line 3355 def first slice(0, 1) end |
#gather_every(n) ⇒ LazyFrame Also known as: take_every
Take every nth row in the LazyFrame and return as a new LazyFrame.
3413 3414 3415 |
# File 'lib/polars/lazy_frame.rb', line 3413 def gather_every(n) select(F.col("*").gather_every(n)) end |
#group_by(*by, maintain_order: false, **named_by) ⇒ LazyGroupBy Also known as: groupby, group
Start a group by operation.
1666 1667 1668 1669 1670 |
# File 'lib/polars/lazy_frame.rb', line 1666 def group_by(*by, maintain_order: false, **named_by) exprs = Utils.parse_into_list_of_expressions(*by, **named_by) lgb = _ldf.group_by(exprs, maintain_order) LazyGroupBy.new(lgb) end |
#group_by_dynamic(index_column, every:, period: nil, offset: nil, truncate: nil, include_boundaries: false, closed: "left", label: "left", by: nil, start_by: "window") ⇒ DataFrame Also known as: groupby_dynamic
Group based on a time value (or index value of type :i32, :i64).
Time windows are calculated and rows are assigned to windows. Different from a normal group by is that a row can be member of multiple groups. The time/index window could be seen as a rolling window, with a window size determined by dates/times/values instead of slots in the DataFrame.
A window is defined by:
- every: interval of the window
- period: length of the window
- offset: offset of the window
The every, period and offset arguments are created with
the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_dynamic on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 |
# File 'lib/polars/lazy_frame.rb', line 2037 def group_by_dynamic( index_column, every:, period: nil, offset: nil, truncate: nil, include_boundaries: false, closed: "left", label: "left", by: nil, start_by: "window" ) if !truncate.nil? label = truncate ? "left" : "datapoint" end index_column = Utils.parse_into_expression(index_column, str_as_lit: false) if offset.nil? offset = period.nil? ? "-#{every}" : "0ns" end if period.nil? period = every end period = Utils.parse_as_duration_string(period) offset = Utils.parse_as_duration_string(offset) every = Utils.parse_as_duration_string(every) rbexprs_by = by.nil? ? [] : Utils.parse_into_list_of_expressions(by) lgb = _ldf.group_by_dynamic( index_column, every, period, offset, label, include_boundaries, closed, rbexprs_by, start_by ) LazyGroupBy.new(lgb) end |
#head(n = 5) ⇒ LazyFrame
3260 3261 3262 |
# File 'lib/polars/lazy_frame.rb', line 3260 def head(n = 5) slice(0, n) end |
#include?(key) ⇒ Boolean
Check if LazyFrame includes key.
120 121 122 |
# File 'lib/polars/lazy_frame.rb', line 120 def include?(key) columns.include?(key) end |
#interpolate ⇒ LazyFrame
Interpolate intermediate values. The interpolation method is linear.
4049 4050 4051 |
# File 'lib/polars/lazy_frame.rb', line 4049 def interpolate select(F.col("*").interpolate) end |
#join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", join_nulls: false, allow_parallel: true, force_parallel: false, coalesce: nil, maintain_order: nil) ⇒ LazyFrame
Add a join operation to the Logical Plan.
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 |
# File 'lib/polars/lazy_frame.rb', line 2554 def join( other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right", validate: "m:m", join_nulls: false, allow_parallel: true, force_parallel: false, coalesce: nil, maintain_order: nil ) if !other.is_a?(LazyFrame) raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}" end if maintain_order.nil? maintain_order = "none" end if how == "outer" how = "full" elsif how == "cross" return _from_rbldf( _ldf.join( other._ldf, [], [], allow_parallel, join_nulls, force_parallel, how, suffix, validate, maintain_order, coalesce ) ) end if !on.nil? rbexprs = Utils.parse_into_list_of_expressions(on) rbexprs_left = rbexprs rbexprs_right = rbexprs elsif !left_on.nil? && !right_on.nil? rbexprs_left = Utils.parse_into_list_of_expressions(left_on) rbexprs_right = Utils.parse_into_list_of_expressions(right_on) else raise ArgumentError, "must specify `on` OR `left_on` and `right_on`" end _from_rbldf( self._ldf.join( other._ldf, rbexprs_left, rbexprs_right, allow_parallel, force_parallel, join_nulls, how, suffix, validate, maintain_order, coalesce ) ) end |
#join_asof(other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true) ⇒ LazyFrame
Perform an asof join.
This is similar to a left-join except that we match on nearest key rather than equal keys.
Both DataFrames must be sorted by the join_asof key.
For each row in the left DataFrame:
- A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
- A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
The default is "backward".
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 |
# File 'lib/polars/lazy_frame.rb', line 2341 def join_asof( other, left_on: nil, right_on: nil, on: nil, by_left: nil, by_right: nil, by: nil, strategy: "backward", suffix: "_right", tolerance: nil, allow_parallel: true, force_parallel: false, coalesce: true, allow_exact_matches: true, check_sortedness: true ) if !other.is_a?(LazyFrame) raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}" end if on.is_a?(::String) left_on = on right_on = on end if left_on.nil? || right_on.nil? raise ArgumentError, "You should pass the column to join on as an argument." end if by_left.is_a?(::String) || by_left.is_a?(Expr) by_left_ = [by_left] else by_left_ = by_left end if by_right.is_a?(::String) || by_right.is_a?(Expr) by_right_ = [by_right] else by_right_ = by_right end if by.is_a?(::String) by_left_ = [by] by_right_ = [by] elsif by.is_a?(::Array) by_left_ = by by_right_ = by end tolerance_str = nil tolerance_num = nil if tolerance.is_a?(::String) tolerance_str = tolerance else tolerance_num = tolerance end _from_rbldf( _ldf.join_asof( other._ldf, Polars.col(left_on)._rbexpr, Polars.col(right_on)._rbexpr, by_left_, by_right_, allow_parallel, force_parallel, suffix, strategy, tolerance_num, tolerance_str, coalesce, allow_exact_matches, check_sortedness ) ) end |
#join_where(other, *predicates, suffix: "_right") ⇒ LazyFrame
The row order of the input DataFrames is not preserved.
This functionality is experimental. It may be changed at any point without it being considered a breaking change.
Perform a join based on one or multiple (in)equality predicates.
This performs an inner join, so only rows where all predicates are true are included in the result, and a row from either DataFrame may be included multiple times in the result.
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 |
# File 'lib/polars/lazy_frame.rb', line 2703 def join_where( other, *predicates, suffix: "_right" ) Utils.require_same_type(self, other) rbexprs = Utils.parse_into_list_of_expressions(*predicates) _from_rbldf( _ldf.join_where( other._ldf, rbexprs, suffix ) ) end |
#last ⇒ LazyFrame
Get the last row of the DataFrame.
3330 3331 3332 |
# File 'lib/polars/lazy_frame.rb', line 3330 def last tail(1) end |
#lazy ⇒ LazyFrame
Return lazy representation, i.e. itself.
Useful for writing code that expects either a DataFrame or
LazyFrame.
1217 1218 1219 |
# File 'lib/polars/lazy_frame.rb', line 1217 def lazy self end |
#limit(n = 5) ⇒ LazyFrame
3210 3211 3212 |
# File 'lib/polars/lazy_frame.rb', line 3210 def limit(n = 5) head(n) end |
#max ⇒ LazyFrame
Aggregate the columns in the DataFrame to their maximum value.
3609 3610 3611 |
# File 'lib/polars/lazy_frame.rb', line 3609 def max _from_rbldf(_ldf.max) end |
#mean ⇒ LazyFrame
Aggregate the columns in the DataFrame to their mean value.
3669 3670 3671 |
# File 'lib/polars/lazy_frame.rb', line 3669 def mean _from_rbldf(_ldf.mean) end |
#median ⇒ LazyFrame
Aggregate the columns in the DataFrame to their median value.
3689 3690 3691 |
# File 'lib/polars/lazy_frame.rb', line 3689 def median _from_rbldf(_ldf.median) end |
#merge_sorted(other, key) ⇒ LazyFrame
Take two sorted DataFrames and merge them by the sorted key.
The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted by that key otherwise the output will not make sense.
The schemas of both LazyFrames must be equal.
4151 4152 4153 |
# File 'lib/polars/lazy_frame.rb', line 4151 def merge_sorted(other, key) _from_rbldf(_ldf.merge_sorted(other._ldf, key)) end |
#min ⇒ LazyFrame
Aggregate the columns in the DataFrame to their minimum value.
3629 3630 3631 |
# File 'lib/polars/lazy_frame.rb', line 3629 def min _from_rbldf(_ldf.min) end |
#null_count ⇒ LazyFrame
Aggregate the columns in the LazyFrame as the sum of their null value count.
3715 3716 3717 |
# File 'lib/polars/lazy_frame.rb', line 3715 def null_count _from_rbldf(_ldf.null_count) end |
#pipe(func, *args, **kwargs, &block) ⇒ LazyFrame
Offers a structured way to apply a sequence of user-defined functions (UDFs).
185 186 187 |
# File 'lib/polars/lazy_frame.rb', line 185 def pipe(func, *args, **kwargs, &block) func.call(self, *args, **kwargs, &block) end |
#quantile(quantile, interpolation: "nearest") ⇒ LazyFrame
Aggregate the columns in the DataFrame to their quantile value.
3740 3741 3742 3743 |
# File 'lib/polars/lazy_frame.rb', line 3740 def quantile(quantile, interpolation: "nearest") quantile = Utils.parse_into_expression(quantile, str_as_lit: false) _from_rbldf(_ldf.quantile(quantile, interpolation)) end |
#remove(*predicates, **constraints) ⇒ LazyFrame
Remove rows, dropping those that match the given predicate expression(s).
The original order of the remaining rows is preserved.
Rows where the filter predicate does not evaluate to true are retained
(this includes rows where the predicate evaluates as null).
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 |
# File 'lib/polars/lazy_frame.rb', line 1493 def remove( *predicates, **constraints ) if constraints.empty? # early-exit conditions (exclude/include all rows) if predicates.empty? || (predicates.length == 1 && predicates[0].is_a?(TrueClass)) return clear end if predicates.length == 1 && predicates[0].is_a?(FalseClass) return dup end end _filter( predicates: predicates, constraints: constraints, invert: true ) end |
#rename(mapping, strict: true) ⇒ LazyFrame
Rename column names.
2993 2994 2995 2996 2997 2998 2999 3000 3001 |
# File 'lib/polars/lazy_frame.rb', line 2993 def rename(mapping, strict: true) if mapping.respond_to?(:call) select(F.all.name.map(&mapping)) else existing = mapping.keys _new = mapping.values _from_rbldf(_ldf.rename(existing, _new, strict)) end end |
#reverse ⇒ LazyFrame
Reverse the DataFrame.
3026 3027 3028 |
# File 'lib/polars/lazy_frame.rb', line 3026 def reverse _from_rbldf(_ldf.reverse) end |
#rolling(index_column:, period:, offset: nil, closed: "right", by: nil) ⇒ LazyFrame Also known as: group_by_rolling, groupby_rolling
Create rolling groups based on a time column.
Also works for index values of type :i32 or :i64.
Different from a dynamic_group_by the windows are now determined by the
individual values and are not of constant intervals. For constant intervals
use group_by_dynamic.
The period and offset arguments are created either from a timedelta, or
by using the following string language:
- 1ns (1 nanosecond)
- 1us (1 microsecond)
- 1ms (1 millisecond)
- 1s (1 second)
- 1m (1 minute)
- 1h (1 hour)
- 1d (1 day)
- 1w (1 week)
- 1mo (1 calendar month)
- 1y (1 calendar year)
- 1i (1 index count)
Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
In case of a group_by_rolling on an integer column, the windows are defined by:
- "1i" # length 1
- "10i" # length 10
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 |
# File 'lib/polars/lazy_frame.rb', line 1758 def rolling( index_column:, period:, offset: nil, closed: "right", by: nil ) index_column = Utils.parse_into_expression(index_column) if offset.nil? offset = Utils.negate_duration_string(Utils.parse_as_duration_string(period)) end rbexprs_by = ( !by.nil? ? Utils.parse_into_list_of_expressions(by) : [] ) period = Utils.parse_as_duration_string(period) offset = Utils.parse_as_duration_string(offset) lgb = _ldf.rolling(index_column, period, offset, closed, rbexprs_by) LazyGroupBy.new(lgb) end |
#schema ⇒ Hash
Get the schema.
101 102 103 |
# File 'lib/polars/lazy_frame.rb', line 101 def schema _ldf.collect_schema end |
#select(*exprs, **named_exprs) ⇒ LazyFrame
Select columns from this DataFrame.
1602 1603 1604 1605 1606 1607 1608 1609 |
# File 'lib/polars/lazy_frame.rb', line 1602 def select(*exprs, **named_exprs) structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", "0") != "0" rbexprs = Utils.parse_into_list_of_expressions( *exprs, **named_exprs, __structify: structify ) _from_rbldf(_ldf.select(rbexprs)) end |
#select_seq(*exprs, **named_exprs) ⇒ LazyFrame
Select columns from this LazyFrame.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
1625 1626 1627 1628 1629 1630 1631 1632 |
# File 'lib/polars/lazy_frame.rb', line 1625 def select_seq(*exprs, **named_exprs) structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", 0).to_i != 0 rbexprs = Utils.parse_into_list_of_expressions( *exprs, **named_exprs, __structify: structify ) _from_rbldf(_ldf.select_seq(rbexprs)) end |
#set_sorted(column, descending: false) ⇒ LazyFrame
This can lead to incorrect results if the data is NOT sorted! Use with care!
Flag a column as sorted.
This can speed up future operations.
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 |
# File 'lib/polars/lazy_frame.rb', line 4168 def set_sorted( column, descending: false ) if !Utils.strlike?(column) msg = "expected a 'str' for argument 'column' in 'set_sorted'" raise TypeError, msg end with_columns(F.col(column).set_sorted(descending: descending)) end |
#shift(n, fill_value: nil) ⇒ LazyFrame
Shift the values by a given period.
3072 3073 3074 3075 3076 3077 3078 |
# File 'lib/polars/lazy_frame.rb', line 3072 def shift(n, fill_value: nil) if !fill_value.nil? fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true) end n = Utils.parse_into_expression(n) _from_rbldf(_ldf.shift(n, fill_value)) end |
#shift_and_fill(periods, fill_value) ⇒ LazyFrame
Shift the values by a given period and fill the resulting null values.
3122 3123 3124 |
# File 'lib/polars/lazy_frame.rb', line 3122 def shift_and_fill(periods, fill_value) shift(periods, fill_value: fill_value) end |
#sink_csv(path, include_bom: false, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to a CSV file.
This allows streaming results that are larger than RAM to be written to disk.
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# File 'lib/polars/lazy_frame.rb', line 955 def sink_csv( path, include_bom: false, include_header: true, separator: ",", line_terminator: "\n", quote_char: '"', batch_size: 1024, datetime_format: nil, date_format: nil, time_format: nil, float_scientific: nil, float_precision: nil, decimal_comma: false, null_value: nil, quote_style: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false ) Utils._check_arg_is_1byte("separator", separator, false) Utils._check_arg_is_1byte("quote_char", quote_char, false) lf = _set_sink_optimizations( type_coercion: type_coercion, predicate_pushdown: predicate_pushdown, projection_pushdown: projection_pushdown, simplify_expression: simplify_expression, slice_pushdown: slice_pushdown, no_optimization: no_optimization ) if &.any? = .to_a else = nil end = { "sync_on_close" => sync_on_close || "none", "maintain_order" => maintain_order, "mkdir" => mkdir } lf = lf.sink_csv( path, include_bom, include_header, separator.ord, line_terminator, quote_char.ord, batch_size, datetime_format, date_format, time_format, float_scientific, float_precision, decimal_comma, null_value, quote_style, , retries, ) lf = LazyFrame._from_rbldf(lf) if !lazy lf.collect return nil end lf end |
#sink_ipc(path, compression: "zstd", maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to an IPC file.
This allows streaming results that are larger than RAM to be written to disk.
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
# File 'lib/polars/lazy_frame.rb', line 805 def sink_ipc( path, compression: "zstd", maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, sync_on_close: nil, mkdir: false, lazy: false ) # TODO support storage options in Rust = nil retries = 2 lf = _set_sink_optimizations( type_coercion: type_coercion, predicate_pushdown: predicate_pushdown, projection_pushdown: projection_pushdown, simplify_expression: simplify_expression, slice_pushdown: slice_pushdown, no_optimization: no_optimization ) if &.any? = .to_a else = nil end = { "sync_on_close" => sync_on_close || "none", "maintain_order" => maintain_order, "mkdir" => mkdir } lf = lf.sink_ipc( path, compression, , retries, ) lf = LazyFrame._from_rbldf(lf) if !lazy lf.collect return nil end lf end |
#sink_ndjson(path, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Evaluate the query in streaming mode and write to an NDJSON file.
This allows streaming results that are larger than RAM to be written to disk.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 |
# File 'lib/polars/lazy_frame.rb', line 1089 def sink_ndjson( path, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, slice_pushdown: true, no_optimization: false, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false ) lf = _set_sink_optimizations( type_coercion: type_coercion, predicate_pushdown: predicate_pushdown, projection_pushdown: projection_pushdown, simplify_expression: simplify_expression, slice_pushdown: slice_pushdown, no_optimization: no_optimization ) if &.any? = .to_a else = nil end = { "sync_on_close" => sync_on_close || "none", "maintain_order" => maintain_order, "mkdir" => mkdir } lf = lf.sink_json(path, , retries, ) lf = LazyFrame._from_rbldf(lf) if !lazy lf.collect return nil end lf end |
#sink_parquet(path, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_pagesize_limit: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, no_optimization: false, slice_pushdown: true, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false) ⇒ DataFrame
Persists a LazyFrame at the provided path.
This allows streaming results that are larger than RAM to be written to disk.
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
# File 'lib/polars/lazy_frame.rb', line 686 def sink_parquet( path, compression: "zstd", compression_level: nil, statistics: true, row_group_size: nil, data_pagesize_limit: nil, maintain_order: true, type_coercion: true, predicate_pushdown: true, projection_pushdown: true, simplify_expression: true, no_optimization: false, slice_pushdown: true, storage_options: nil, retries: 2, sync_on_close: nil, mkdir: false, lazy: false ) lf = _set_sink_optimizations( type_coercion: type_coercion, predicate_pushdown: predicate_pushdown, projection_pushdown: projection_pushdown, simplify_expression: simplify_expression, slice_pushdown: slice_pushdown, no_optimization: no_optimization ) if statistics == true statistics = { min: true, max: true, distinct_count: false, null_count: true } elsif statistics == false statistics = {} elsif statistics == "full" statistics = { min: true, max: true, distinct_count: true, null_count: true } end if &.any? = .to_a else = nil end = { "sync_on_close" => sync_on_close || "none", "maintain_order" => maintain_order, "mkdir" => mkdir } lf = lf.sink_parquet( path, compression, compression_level, statistics, row_group_size, data_pagesize_limit, , retries, ) lf = LazyFrame._from_rbldf(lf) if !lazy lf.collect return nil end lf end |
#slice(offset, length = nil) ⇒ LazyFrame
Get a slice of this DataFrame.
3155 3156 3157 3158 3159 3160 |
# File 'lib/polars/lazy_frame.rb', line 3155 def slice(offset, length = nil) if length && length < 0 raise ArgumentError, "Negative slice lengths (#{length}) are invalid for LazyFrame" end _from_rbldf(_ldf.slice(offset, length)) end |
#sort(by, *more_by, reverse: false, nulls_last: false, maintain_order: false, multithreaded: true) ⇒ LazyFrame
Sort the DataFrame.
Sorting can be done by:
- A single column name
- An expression
- Multiple expressions
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# File 'lib/polars/lazy_frame.rb', line 272 def sort(by, *more_by, reverse: false, nulls_last: false, maintain_order: false, multithreaded: true) if by.is_a?(::String) && more_by.empty? return _from_rbldf( _ldf.sort( by, reverse, nulls_last, maintain_order, multithreaded ) ) end by = Utils.parse_into_list_of_expressions(by, *more_by) reverse = Utils.extend_bool(reverse, by.length, "reverse", "by") nulls_last = Utils.extend_bool(nulls_last, by.length, "nulls_last", "by") _from_rbldf( _ldf.sort_by_exprs( by, reverse, nulls_last, maintain_order, multithreaded ) ) end |
#sql(query, table_name: "self") ⇒ Expr
This functionality is considered unstable, although it is close to being considered stable. It may be changed at any point without it being considered a breaking change.
- The calling frame is automatically registered as a table in the SQL context
under the name "self". If you want access to the DataFrames and LazyFrames
found in the current globals, use the top-level
Polars.sql. - More control over registration and execution behaviour is available by
using the
SQLContextobject.
Execute a SQL query against the LazyFrame.
351 352 353 354 355 356 |
# File 'lib/polars/lazy_frame.rb', line 351 def sql(query, table_name: "self") ctx = Polars::SQLContext.new name = table_name || "self" ctx.register(name, self) ctx.execute(query) end |
#std(ddof: 1) ⇒ LazyFrame
Aggregate the columns in the DataFrame to their standard deviation value.
3557 3558 3559 |
# File 'lib/polars/lazy_frame.rb', line 3557 def std(ddof: 1) _from_rbldf(_ldf.std(ddof)) end |
#sum ⇒ LazyFrame
Aggregate the columns in the DataFrame to their sum value.
3649 3650 3651 |
# File 'lib/polars/lazy_frame.rb', line 3649 def sum _from_rbldf(_ldf.sum) end |
#tail(n = 5) ⇒ LazyFrame
Get the last n rows.
3305 3306 3307 |
# File 'lib/polars/lazy_frame.rb', line 3305 def tail(n = 5) _from_rbldf(_ldf.tail(n)) end |
#to_s ⇒ String
Returns a string representing the LazyFrame.
132 133 134 135 136 137 138 |
# File 'lib/polars/lazy_frame.rb', line 132 def to_s <<~EOS naive plan: (run LazyFrame#describe_optimized_plan to see the optimized plan) #{describe_plan} EOS end |
#top_k(k, by:, reverse: false) ⇒ LazyFrame
Return the k largest rows.
Non-null elements are always preferred over null elements, regardless of
the value of reverse. The output is not guaranteed to be in any
particular order, call :func:sort after this function if you wish the
output to be sorted.
412 413 414 415 416 417 418 419 420 |
# File 'lib/polars/lazy_frame.rb', line 412 def top_k( k, by:, reverse: false ) by = Utils.parse_into_list_of_expressions(by) reverse = Utils.extend_bool(reverse, by.length, "reverse", "by") _from_rbldf(_ldf.top_k(k, by, reverse)) end |
#unique(maintain_order: true, subset: nil, keep: "first") ⇒ LazyFrame
Drop duplicate rows from this DataFrame.
Note that this fails if there is a column of type List in the DataFrame or
subset.
3841 3842 3843 3844 3845 3846 3847 |
# File 'lib/polars/lazy_frame.rb', line 3841 def unique(maintain_order: true, subset: nil, keep: "first") selector_subset = nil if !subset.nil? selector_subset = Utils.parse_list_into_selector(subset)._rbselector end _from_rbldf(_ldf.unique(maintain_order, selector_subset, keep)) end |
#unnest(columns, *more_columns) ⇒ LazyFrame
Decompose a struct into its fields.
The fields will be inserted into the DataFrame on the location of the
struct type.
4106 4107 4108 4109 4110 4111 |
# File 'lib/polars/lazy_frame.rb', line 4106 def unnest(columns, *more_columns) subset = Utils.parse_list_into_selector(columns) | Utils.parse_list_into_selector( more_columns ) _from_rbldf(_ldf.unnest(subset._rbselector)) end |
#unpivot(on, index: nil, variable_name: nil, value_name: nil, streamable: true) ⇒ LazyFrame Also known as: melt
Unpivot a DataFrame from wide to long format.
Optionally leaves identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (index) while all other columns, considered measured variables (on), are "unpivoted" to the row axis leaving just two non-identifier columns, 'variable' and 'value'.
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 |
# File 'lib/polars/lazy_frame.rb', line 3996 def unpivot( on, index: nil, variable_name: nil, value_name: nil, streamable: true ) if !streamable warn "The `streamable` parameter for `LazyFrame.unpivot` is deprecated" end selector_on = on.nil? ? Selectors.empty : Utils.parse_list_into_selector(on) selector_index = index.nil? ? Selectors.empty : Utils.parse_list_into_selector(index) _from_rbldf( _ldf.unpivot( selector_on._rbselector, selector_index._rbselector, value_name, variable_name ) ) end |
#update(other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left") ⇒ LazyFrame
This functionality is considered unstable. It may be changed at any point without it being considered a breaking change.
This is syntactic sugar for a left/inner join that preserves the order
of the left DataFrame by default, with an optional coalesce when
include_nulls: False.
Update the values in this LazyFrame with the values in other.
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 |
# File 'lib/polars/lazy_frame.rb', line 4289 def update( other, on: nil, how: "left", left_on: nil, right_on: nil, include_nulls: false, maintain_order: "left" ) Utils.require_same_type(self, other) if ["outer", "outer_coalesce"].include?(how) how = "full" end if !["left", "inner", "full"].include?(how) msg = "`how` must be one of {{'left', 'inner', 'full'}}; found #{how.inspect}" raise ArgumentError, msg end slf = self row_index_used = false if on.nil? if left_on.nil? && right_on.nil? # no keys provided--use row index row_index_used = true row_index_name = "__POLARS_ROW_INDEX" slf = slf.with_row_index(name: row_index_name) other = other.with_row_index(name: row_index_name) left_on = right_on = [row_index_name] else # one of left or right is missing, raise error if left_on.nil? msg = "missing join columns for left frame" raise ArgumentError, msg end if right_on.nil? msg = "missing join columns for right frame" raise ArgumentError, msg end end else # move on into left/right_on to simplify logic left_on = right_on = on end if left_on.is_a?(::String) left_on = [left_on] end if right_on.is_a?(::String) right_on = [right_on] end left_schema = slf.collect_schema left_on.each do |name| if !left_schema.include?(name) msg = "left join column #{name.inspect} not found" raise ArgumentError, msg end end right_schema = other.collect_schema right_on.each do |name| if !right_schema.include?(name) msg = "right join column #{name.inspect} not found" raise ArgumentError, msg end end # no need to join if *only* join columns are in other (inner/left update only) if how != "full" && right_schema.length == right_on.length if row_index_used return slf.drop(row_index_name) end return slf end # only use non-idx right columns present in left frame right_other = Set.new(right_schema.to_h.keys).intersection(left_schema.to_h.keys) - Set.new(right_on) # When include_nulls is True, we need to distinguish records after the join that # were originally null in the right frame, as opposed to records that were null # because the key was missing from the right frame. # Add a validity column to track whether row was matched or not. if include_nulls validity = ["__POLARS_VALIDITY"] other = other.with_columns(F.lit(true).alias(validity[0])) else validity = [] end tmp_name = "__POLARS_RIGHT" drop_columns = right_other.map { |name| "#{name}#{tmp_name}" } + validity result = ( slf.join( other.select(*right_on, *right_other, *validity), left_on: left_on, right_on: right_on, how: how, suffix: tmp_name, coalesce: true, maintain_order: maintain_order ) .with_columns( right_other.map do |name| ( if include_nulls # use left value only when right value failed to join F.when(F.col(validity).is_null) .then(F.col(name)) .otherwise(F.col("#{name}#{tmp_name}")) else F.coalesce(["#{name}#{tmp_name}", F.col(name)]) end ).alias(name) end ) .drop(drop_columns) ) if row_index_used result = result.drop(row_index_name) end _from_rbldf(result._ldf) end |
#var(ddof: 1) ⇒ LazyFrame
Aggregate the columns in the DataFrame to their variance value.
3589 3590 3591 |
# File 'lib/polars/lazy_frame.rb', line 3589 def var(ddof: 1) _from_rbldf(_ldf.var(ddof)) end |
#width ⇒ Integer
Get the width of the LazyFrame.
113 114 115 |
# File 'lib/polars/lazy_frame.rb', line 113 def width _ldf.collect_schema.length end |
#with_column(column) ⇒ LazyFrame
Add or overwrite column in a DataFrame.
2871 2872 2873 |
# File 'lib/polars/lazy_frame.rb', line 2871 def with_column(column) with_columns([column]) end |
#with_columns(*exprs, **named_exprs) ⇒ LazyFrame
Add or overwrite multiple columns in a DataFrame.
2758 2759 2760 2761 2762 2763 2764 |
# File 'lib/polars/lazy_frame.rb', line 2758 def with_columns(*exprs, **named_exprs) structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", "0") != "0" rbexprs = Utils.parse_into_list_of_expressions(*exprs, **named_exprs, __structify: structify) _from_rbldf(_ldf.with_columns(rbexprs)) end |
#with_columns_seq(*exprs, **named_exprs) ⇒ LazyFrame
Add columns to this LazyFrame.
Added columns will replace existing columns with the same name.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 |
# File 'lib/polars/lazy_frame.rb', line 2782 def with_columns_seq( *exprs, **named_exprs ) structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", 0).to_i != 0 rbexprs = Utils.parse_into_list_of_expressions( *exprs, **named_exprs, __structify: structify ) _from_rbldf(_ldf.with_columns_seq(rbexprs)) end |
#with_context(other) ⇒ LazyFrame
Add an external context to the computation graph.
This allows expressions to also access columns from DataFrames that are not part of this one.
2823 2824 2825 2826 2827 2828 2829 |
# File 'lib/polars/lazy_frame.rb', line 2823 def with_context(other) if !other.is_a?(::Array) other = [other] end _from_rbldf(_ldf.with_context(other.map(&:_ldf))) end |
#with_row_index(name: "index", offset: 0) ⇒ LazyFrame Also known as: with_row_count
This can have a negative effect on query performance. This may, for instance, block predicate pushdown optimization.
Add a column at index 0 that counts the rows.
3391 3392 3393 |
# File 'lib/polars/lazy_frame.rb', line 3391 def with_row_index(name: "index", offset: 0) _from_rbldf(_ldf.with_row_index(name, offset)) end |
#write_json(file) ⇒ nil
Write the logical plan of this LazyFrame to a file or string in JSON format.
146 147 148 149 150 151 152 |
# File 'lib/polars/lazy_frame.rb', line 146 def write_json(file) if Utils.pathlike?(file) file = Utils.normalize_filepath(file) end _ldf.write_json(file) nil end |