Module: Polars::IO

Included in:
Polars
Defined in:
lib/polars/io.rb

Instance Method Summary collapse

Instance Method Details

#read_avro(file, columns: nil, n_rows: nil) ⇒ DataFrame

Read into a DataFrame from Apache Avro format.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from Apache Avro file after reading n_rows.

Returns:



465
466
467
468
469
470
471
# File 'lib/polars/io.rb', line 465

def read_avro(file, columns: nil, n_rows: nil)
  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  DataFrame._read_avro(file, n_rows: n_rows, columns: columns)
end

#read_csv(file, has_header: true, columns: nil, new_columns: nil, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, parse_dates: false, n_threads: nil, infer_schema_length: 100, batch_size: 8192, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, storage_options: nil, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, sample_size: 1024, eol_char: "\n") ⇒ DataFrame

Note:

This operation defaults to a rechunk operation at the end, meaning that all data will be stored continuously in memory. Set rechunk: false if you are benchmarking the csv-reader. A rechunk is an expensive operation.

Read a CSV file into a DataFrame.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to false, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • new_columns (Object) (defaults to: nil)

    Rename columns right after parsing the CSV file. If the given list is shorter than the width of the DataFrame the remaining columns will have their original name.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting. Set to nil to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • n_threads (Integer) (defaults to: nil)

    Number of threads to use in csv parsing. Defaults to the number of physical cpu's of your system.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :utf8. If set to nil, a full table scan will be done (slow).

  • batch_size (Integer) (defaults to: 8192)

    Number of lines to read into the buffer at once. Modify this to change performance.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows. During multi-threaded parsing, an upper bound of n_rows rows cannot be guaranteed.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters. When using other encodings than utf8 or utf8-lossy, the input is first decoded im memory with Ruby.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage at expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Make sure that all columns are contiguous in memory by aggregating the chunks into a single array.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • sample_size (Integer) (defaults to: 1024)

    Set the sample size. This is used to sample statistics to estimate the allocation needed.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:



91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# File 'lib/polars/io.rb', line 91

def read_csv(
  file,
  has_header: true,
  columns: nil,
  new_columns: nil,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  parse_dates: false,
  n_threads: nil,
  infer_schema_length: 100,
  batch_size: 8192,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  storage_options: nil,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  sample_size: 1024,
  eol_char: "\n"
)
  _check_arg_is_1byte("sep", sep, false)
  _check_arg_is_1byte("comment_char", comment_char, false)
  _check_arg_is_1byte("quote_char", quote_char, true)
  _check_arg_is_1byte("eol_char", eol_char, false)

  projection, columns = Utils.handle_projection_columns(columns)

  storage_options ||= {}

  if columns && !has_header
    columns.each do |column|
      if !column.start_with?("column_")
        raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
      end
    end
  end

  if projection || new_columns
    raise Todo
  end

  df = nil
  _prepare_file_arg(file) do |data|
    df = DataFrame._read_csv(
      data,
      has_header: has_header,
      columns: columns || projection,
      sep: sep,
      comment_char: comment_char,
      quote_char: quote_char,
      skip_rows: skip_rows,
      dtypes: dtypes,
      null_values: null_values,
      ignore_errors: ignore_errors,
      parse_dates: parse_dates,
      n_threads: n_threads,
      infer_schema_length: infer_schema_length,
      batch_size: batch_size,
      n_rows: n_rows,
      encoding: encoding == "utf8-lossy" ? encoding : "utf8",
      low_memory: low_memory,
      rechunk: rechunk,
      skip_rows_after_header: skip_rows_after_header,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      sample_size: sample_size,
      eol_char: eol_char
    )
  end

  if new_columns
    Utils._update_columns(df, new_columns)
  else
    df
  end
end

#read_csv_batched(file, has_header: true, columns: nil, new_columns: nil, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, parse_dates: false, n_threads: nil, infer_schema_length: 100, batch_size: 50_000, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, sample_size: 1024, eol_char: "\n") ⇒ BatchedCsvReader

Read a CSV file in batches.

Upon creation of the BatchedCsvReader, polars will gather statistics and determine the file chunks. After that work will only be done if next_batches is called.

Examples:

reader = Polars.read_csv_batched(
  "./tpch/tables_scale_100/lineitem.tbl", sep: "|", parse_dates: true
)
reader.next_batches(5)

Parameters:

  • file (Object)

    Path to a file or a file-like object.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to False, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • new_columns (Object) (defaults to: nil)

    Rename columns right after parsing the CSV file. If the given list is shorter than the width of the DataFrame the remaining columns will have their original name.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting, default = ". Set to nil to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • n_threads (Integer) (defaults to: nil)

    Number of threads to use in csv parsing. Defaults to the number of physical cpu's of your system.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :str. If set to nil, a full table scan will be done (slow).

  • batch_size (Integer) (defaults to: 50_000)

    Number of lines to read into the buffer at once. Modify this to change performance.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows. During multi-threaded parsing, an upper bound of n_rows rows cannot be guaranteed.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters. When using other encodings than utf8 or utf8-lossy, the input is first decoded im memory with Ruby. Defaults to utf8.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage at expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Make sure that all columns are contiguous in memory by aggregating the chunks into a single array.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • sample_size (Integer) (defaults to: 1024)

    Set the sample size. This is used to sample statistics to estimate the allocation needed.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:

  • (BatchedCsvReader)


689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# File 'lib/polars/io.rb', line 689

def read_csv_batched(
  file,
  has_header: true,
  columns: nil,
  new_columns: nil,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  parse_dates: false,
  n_threads: nil,
  infer_schema_length: 100,
  batch_size: 50_000,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  sample_size: 1024,
  eol_char: "\n"
)
  projection, columns = Utils.handle_projection_columns(columns)

  if columns && !has_header
    columns.each do |column|
      if !column.start_with?("column_")
        raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
      end
    end
  end

  if projection || new_columns
    raise Todo
  end

  BatchedCsvReader.new(
    file,
    has_header: has_header,
    columns: columns || projection,
    sep: sep,
    comment_char: comment_char,
    quote_char: quote_char,
    skip_rows: skip_rows,
    dtypes: dtypes,
    null_values: null_values,
    ignore_errors: ignore_errors,
    parse_dates: parse_dates,
    n_threads: n_threads,
    infer_schema_length: infer_schema_length,
    batch_size: batch_size,
    n_rows: n_rows,
    encoding: encoding == "utf8-lossy" ? encoding : "utf8",
    low_memory: low_memory,
    rechunk: rechunk,
    skip_rows_after_header: skip_rows_after_header,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    sample_size: sample_size,
    eol_char: eol_char,
    new_columns: new_columns
  )
end

#read_ipc(file, columns: nil, n_rows: nil, memory_map: true, storage_options: nil, row_count_name: nil, row_count_offset: 0, rechunk: true) ⇒ DataFrame

Read into a DataFrame from Arrow IPC (Feather v2) file.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from IPC file after reading n_rows.

  • memory_map (Boolean) (defaults to: true)

    Try to memory map the file. This can greatly improve performance on repeated queries as the OS may cache pages. Only uncompressed IPC files can be memory mapped.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • rechunk (Boolean) (defaults to: true)

    Make sure that all data is contiguous.

Returns:



497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# File 'lib/polars/io.rb', line 497

def read_ipc(
  file,
  columns: nil,
  n_rows: nil,
  memory_map: true,
  storage_options: nil,
  row_count_name: nil,
  row_count_offset: 0,
  rechunk: true
)
  storage_options ||= {}
  _prepare_file_arg(file, **storage_options) do |data|
    DataFrame._read_ipc(
      data,
      columns: columns,
      n_rows: n_rows,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      rechunk: rechunk,
      memory_map: memory_map
    )
  end
end

#read_ipc_schema(file) ⇒ Hash

Get a schema of the IPC file without reading data.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

Returns:

  • (Hash)


763
764
765
766
767
768
769
# File 'lib/polars/io.rb', line 763

def read_ipc_schema(file)
  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  _ipc_schema(file)
end

#read_json(file) ⇒ DataFrame

Read into a DataFrame from a JSON file.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

Returns:



579
580
581
# File 'lib/polars/io.rb', line 579

def read_json(file)
  DataFrame._read_json(file)
end

#read_ndjson(file) ⇒ DataFrame

Read into a DataFrame from a newline delimited JSON file.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

Returns:



589
590
591
# File 'lib/polars/io.rb', line 589

def read_ndjson(file)
  DataFrame._read_ndjson(file)
end

#read_parquet(file, columns: nil, n_rows: nil, storage_options: nil, parallel: "auto", row_count_name: nil, row_count_offset: 0, low_memory: false) ⇒ DataFrame

Note:

This operation defaults to a rechunk operation at the end, meaning that all data will be stored continuously in memory. Set rechunk: false if you are benchmarking the parquet-reader. A rechunk is an expensive operation.

Read into a DataFrame from a parquet file.

Parameters:

  • file (Object)

    Path to a file, or a file-like object.

  • columns (Object) (defaults to: nil)

    Columns to select. Accepts a list of column indices (starting at zero) or a list of column names.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from parquet file after reading n_rows.

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • parallel ("auto", "columns", "row_groups", "none") (defaults to: "auto")

    This determines the direction of parallelism. 'auto' will try to determine the optimal direction.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

Returns:



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# File 'lib/polars/io.rb', line 550

def read_parquet(
  file,
  columns: nil,
  n_rows: nil,
  storage_options: nil,
  parallel: "auto",
  row_count_name: nil,
  row_count_offset: 0,
  low_memory: false
)
  _prepare_file_arg(file) do |data|
    DataFrame._read_parquet(
      data,
      columns: columns,
      n_rows: n_rows,
      parallel: parallel,
      row_count_name: row_count_name,
      row_count_offset: row_count_offset,
      low_memory: low_memory
    )
  end
end

#read_parquet_schema(file) ⇒ Hash

Get a schema of the Parquet file without reading data.

Parameters:

  • file (Object)

    Path to a file or a file-like object.

Returns:

  • (Hash)


777
778
779
780
781
782
783
# File 'lib/polars/io.rb', line 777

def read_parquet_schema(file)
  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  _parquet_schema(file)
end

#scan_csv(file, has_header: true, sep: ",", comment_char: nil, quote_char: '"', skip_rows: 0, dtypes: nil, null_values: nil, ignore_errors: false, cache: true, with_column_names: nil, infer_schema_length: 100, n_rows: nil, encoding: "utf8", low_memory: false, rechunk: true, skip_rows_after_header: 0, row_count_name: nil, row_count_offset: 0, parse_dates: false, eol_char: "\n") ⇒ LazyFrame

Lazily read from a CSV file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • file (Object)

    Path to a file.

  • has_header (Boolean) (defaults to: true)

    Indicate if the first row of dataset is a header or not. If set to false, column names will be autogenerated in the following format: column_x, with x being an enumeration over every column in the dataset starting at 1.

  • sep (String) (defaults to: ",")

    Single byte character to use as delimiter in the file.

  • comment_char (String) (defaults to: nil)

    Single byte character that indicates the start of a comment line, for instance #.

  • quote_char (String) (defaults to: '"')

    Single byte character used for csv quoting. Set to None to turn off special handling and escaping of quotes.

  • skip_rows (Integer) (defaults to: 0)

    Start reading after skip_rows lines. The header will be parsed at this offset.

  • dtypes (Object) (defaults to: nil)

    Overwrite dtypes during inference.

  • null_values (Object) (defaults to: nil)

    Values to interpret as null values. You can provide a:

    • String: All values equal to this string will be null.
    • Array: All values equal to any string in this array will be null.
    • Hash: A hash that maps column name to a null value string.
  • ignore_errors (Boolean) (defaults to: false)

    Try to keep reading lines if some lines yield errors. First try infer_schema_length: 0 to read all columns as :str to check which values might cause an issue.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • with_column_names (Object) (defaults to: nil)

    Apply a function over the column names. This can be used to update a schema just in time, thus before scanning.

  • infer_schema_length (Integer) (defaults to: 100)

    Maximum number of lines to read to infer schema. If set to 0, all columns will be read as :str. If set to nil, a full table scan will be done (slow).

  • n_rows (Integer) (defaults to: nil)

    Stop reading from CSV file after reading n_rows.

  • encoding ("utf8", "utf8-lossy") (defaults to: "utf8")

    Lossy means that invalid utf8 values are replaced with characters.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory usage in expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • skip_rows_after_header (Integer) (defaults to: 0)

    Skip this number of rows when the header is parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with the given name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only used if the name is set).

  • parse_dates (Boolean) (defaults to: false)

    Try to automatically parse dates. If this does not succeed, the column remains of data type :str.

  • eol_char (String) (defaults to: "\n")

    Single byte end of line character.

Returns:



244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# File 'lib/polars/io.rb', line 244

def scan_csv(
  file,
  has_header: true,
  sep: ",",
  comment_char: nil,
  quote_char: '"',
  skip_rows: 0,
  dtypes: nil,
  null_values: nil,
  ignore_errors: false,
  cache: true,
  with_column_names: nil,
  infer_schema_length: 100,
  n_rows: nil,
  encoding: "utf8",
  low_memory: false,
  rechunk: true,
  skip_rows_after_header: 0,
  row_count_name: nil,
  row_count_offset: 0,
  parse_dates: false,
  eol_char: "\n"
)
  _check_arg_is_1byte("sep", sep, false)
  _check_arg_is_1byte("comment_char", comment_char, false)
  _check_arg_is_1byte("quote_char", quote_char, true)

  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  LazyFrame._scan_csv(
    file,
    has_header: has_header,
    sep: sep,
    comment_char: comment_char,
    quote_char: quote_char,
    skip_rows: skip_rows,
    dtypes: dtypes,
    null_values: null_values,
    ignore_errors: ignore_errors,
    cache: cache,
    with_column_names: with_column_names,
    infer_schema_length: infer_schema_length,
    n_rows: n_rows,
    low_memory: low_memory,
    rechunk: rechunk,
    skip_rows_after_header: skip_rows_after_header,
    encoding: encoding,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    parse_dates: parse_dates,
    eol_char: eol_char,
  )
end

#scan_ipc(file, n_rows: nil, cache: true, rechunk: true, row_count_name: nil, row_count_offset: 0, storage_options: nil, memory_map: true) ⇒ LazyFrame

Lazily read from an Arrow IPC (Feather v2) file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • file (String)

    Path to a IPC file.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from IPC file after reading n_rows.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • memory_map (Boolean) (defaults to: true)

    Try to memory map the file. This can greatly improve performance on repeated queries as the OS may cache pages. Only uncompressed IPC files can be memory mapped.

Returns:



326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# File 'lib/polars/io.rb', line 326

def scan_ipc(
  file,
  n_rows: nil,
  cache: true,
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0,
  storage_options: nil,
  memory_map: true
)
  LazyFrame._scan_ipc(
    file,
    n_rows: n_rows,
    cache: cache,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    storage_options: storage_options,
    memory_map: memory_map
  )
end

#scan_ndjson(file, infer_schema_length: 100, batch_size: 1024, n_rows: nil, low_memory: false, rechunk: true, row_count_name: nil, row_count_offset: 0) ⇒ LazyFrame

Lazily read from a newline delimited JSON file.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • file (String)

    Path to a file.

  • infer_schema_length (Integer) (defaults to: 100)

    Infer the schema length from the first infer_schema_length rows.

  • batch_size (Integer) (defaults to: 1024)

    Number of rows to read in each batch.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from JSON file after reading n_rows.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

  • rechunk (Boolean) (defaults to: true)

    Reallocate to contiguous memory when all chunks/ files are parsed.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

Returns:



428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# File 'lib/polars/io.rb', line 428

def scan_ndjson(
  file,
  infer_schema_length: 100,
  batch_size: 1024,
  n_rows: nil,
  low_memory: false,
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0
)
  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  LazyFrame._scan_ndjson(
    file,
    infer_schema_length: infer_schema_length,
    batch_size: batch_size,
    n_rows: n_rows,
    low_memory: low_memory,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
  )
end

#scan_parquet(file, n_rows: nil, cache: true, parallel: "auto", rechunk: true, row_count_name: nil, row_count_offset: 0, storage_options: nil, low_memory: false) ⇒ LazyFrame

Lazily read from a parquet file or multiple files via glob patterns.

This allows the query optimizer to push down predicates and projections to the scan level, thereby potentially reducing memory overhead.

Parameters:

  • file (String)

    Path to a file.

  • n_rows (Integer) (defaults to: nil)

    Stop reading from parquet file after reading n_rows.

  • cache (Boolean) (defaults to: true)

    Cache the result after reading.

  • parallel ("auto", "columns", "row_groups", "none") (defaults to: "auto")

    This determines the direction of parallelism. 'auto' will try to determine the optimal direction.

  • rechunk (Boolean) (defaults to: true)

    In case of reading multiple files via a glob pattern rechunk the final DataFrame into contiguous memory chunks.

  • row_count_name (String) (defaults to: nil)

    If not nil, this will insert a row count column with give name into the DataFrame.

  • row_count_offset (Integer) (defaults to: 0)

    Offset to start the row_count column (only use if the name is set).

  • storage_options (Hash) (defaults to: nil)

    Extra options that make sense for a particular storage connection.

  • low_memory (Boolean) (defaults to: false)

    Reduce memory pressure at the expense of performance.

Returns:



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# File 'lib/polars/io.rb', line 376

def scan_parquet(
  file,
  n_rows: nil,
  cache: true,
  parallel: "auto",
  rechunk: true,
  row_count_name: nil,
  row_count_offset: 0,
  storage_options: nil,
  low_memory: false
)
  if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
    file = Utils.format_path(file)
  end

  LazyFrame._scan_parquet(
    file,
    n_rows:n_rows,
    cache: cache,
    parallel: parallel,
    rechunk: rechunk,
    row_count_name: row_count_name,
    row_count_offset: row_count_offset,
    storage_options: storage_options,
    low_memory: low_memory
  )
end