Class: PerfectShape::QuadraticBezierCurve

Inherits:
Shape
  • Object
show all
Includes:
MultiPoint
Defined in:
lib/perfect_shape/quadratic_bezier_curve.rb

Constant Summary collapse

BELOW =
-2
LOWEDGE =
-1
INSIDE =
0
HIGHEDGE =
1
ABOVE =
2
OUTLINE_MINIMUM_DISTANCE_THRESHOLD =
BigDecimal('0.001')

Instance Attribute Summary

Attributes included from MultiPoint

#points

Class Method Summary collapse

Instance Method Summary collapse

Methods included from MultiPoint

#first_point, #initialize, #max_x, #max_y, #min_x, #min_y, normalize_point_array

Methods inherited from Shape

#==, #bounding_box, #center_point, #center_x, #center_y, #height, #max_x, #max_y, #min_x, #min_y, #width

Class Method Details

.eqn(val, c1, cp, c2) ⇒ Object

Fill an array with the coefficients of the parametric equation in t, ready for solving against val with solve_quadratic. We currently have:

val = Py(t) = C1*(1-t)^2 + 2*CP*t*(1-t) + C2*t^2
            = C1 - 2*C1*t + C1*t^2 + 2*CP*t - 2*CP*t^2 + C2*t^2
            = C1 + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
          0 = (C1 - val) + (2*CP - 2*C1)*t + (C1 - 2*CP + C2)*t^2
          0 = C + Bt + At^2
C = C1 - val
B = 2*CP - 2*C1
A = C1 - 2*CP + C2


89
90
91
92
93
94
95
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 89

def eqn(val, c1, cp, c2)
  [
    c1 - val,
    cp + cp - c1 - c1,
    c1 - cp - cp + c2,
  ]
end

.eval_quadratic(vals, num, include0, include1, inflect, c1, ctrl, c2) ⇒ Object

Evaluate the t values in the first num slots of the vals[] array and place the evaluated values back into the same array. Only evaluate t values that are within the range <, >, including the 0 and 1 ends of the range iff the include0 or include1 booleans are true. If an “inflection” equation is handed in, then any points which represent a point of inflection for that quadratic equation are also ignored.



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 151

def eval_quadratic(vals, num,
                             include0,
                             include1,
                             inflect,
                             c1, ctrl, c2)
  j = -1
  i = 0
  while i < num
    t = vals[i]
    
    if ((include0 ? t >= 0 : t > 0) &&
        (include1 ? t <= 1 : t < 1) &&
        (inflect.nil? ||
         inflect[1] + 2*inflect[2]*t != 0))
      u = 1 - t
      vals[j+=1] = c1*u*u + 2*ctrl*t*u + c2*t*t
    end
    i+=1
  end
  j
end

.point_crossings(x1, y1, xc, yc, x2, y2, px, py, level = 0) ⇒ Object

Calculates the number of times the quadratic bézier curve from (x1,y1) to (x2,y2) crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 37

def point_crossings(x1, y1, xc, yc, x2, y2, px, py, level = 0)
  return 0 if (py <  y1 && py <  yc && py <  y2)
  return 0 if (py >= y1 && py >= yc && py >= y2)
  # Note y1 could equal y2...
  return 0 if (px >= x1 && px >= xc && px >= x2)
  if (px <  x1 && px <  xc && px <  x2)
    if (py >= y1)
      return 1 if (py < y2)
    else
      # py < y1
      return -1 if (py >= y2)
    end
    # py outside of y11 range, and/or y1==y2
    return 0
  end
  # double precision only has 52 bits of mantissa
  return PerfectShape::Line.point_crossings(x1, y1, x2, y2, px, py) if (level > 52)
  x1c = BigDecimal((x1 + xc).to_s) / 2
  y1c = BigDecimal((y1 + yc).to_s) / 2
  xc1 = BigDecimal((xc + x2).to_s) / 2
  yc1 = BigDecimal((yc + y2).to_s) / 2
  xc = BigDecimal((x1c + xc1).to_s) / 2
  yc = BigDecimal((y1c + yc1).to_s) / 2
  # [xy]c are NaN if any of [xy]0c or [xy]c1 are NaN
  # [xy]0c or [xy]c1 are NaN if any of [xy][0c1] are NaN
  # These values are also NaN if opposing infinities are added
  return 0 if (xc.nan? || yc.nan?)
  point_crossings(x1, y1, x1c, y1c, xc, yc, px, py, level+1) +
    point_crossings(xc, yc, xc1, yc1, x2, y2, px, py, level+1)
end

.solve_quadratic(eqn, res) ⇒ Object

Solves the quadratic whose coefficients are in the eqn array and places the non-complex roots into the res array, returning the number of roots. The quadratic solved is represented by the equation: <pre>

eqn = {C, B, A}
ax^2 + bx + c = 0

</pre> A return value of -1 is used to distinguish a constant equation, which might be always 0 or never 0, from an equation that has no zeroes.

Parameters:

  • eqn

    the specified array of coefficients to use to solve the quadratic equation

  • res

    the array that contains the non-complex roots resulting from the solution of the quadratic equation

Returns:

  • the number of roots, or -1 if the equation is a constant.



114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 114

def solve_quadratic(eqn, res)
  a = eqn[2]
  b = eqn[1]
  c = eqn[0]
  roots = -1
  if a == 0.0
    #  The quadratic parabola has degenerated to a line.
    #  The line has degenerated to a constant.
    return -1 if b == 0.0
    res[roots += 1] = -c / b
  else
    #  From Numerical Recipes, 5.6, Quadratic and Cubic Equations
    d = b * b - 4.0 * a * c
    #  If d < 0.0, then there are no roots
    return 0 if d < 0.0
    d = BigDecimal(Math.sqrt(d).to_a)
    #  For accuracy, calculate one root using:
    #      (-b +/- d) / 2a
    #  and the other using:
    #      2c / (-b +/- d)
    #  Choose the sign of the +/- so that b+d gets larger in magnitude
    d = -d if b < 0.0
    q = (b + d) / -2.0
    #  We already tested a for being 0 above
    res[roots += 1] = q / a
    res[roots += 1] = c / q if q != 0.0
  end
  roots
end

.tag(coord, low, high) ⇒ Object

Determine where coord lies with respect to the range from low to high. It is assumed that low < high. The return value is one of the 5 values BELOW, LOWEDGE, INSIDE, HIGHEDGE, or ABOVE.



72
73
74
75
76
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 72

def tag(coord, low, high)
  return (coord < low ? BELOW : LOWEDGE) if coord <= low
  return (coord > high ? ABOVE : HIGHEDGE) if coord >= high
  INSIDE
end

Instance Method Details

#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean

Checks if quadratic bézier curve contains point (two-number Array or x, y args)

the quadratic bézier curve, false if the point lies outside of the quadratic bézier curve’s bounds.

Parameters:

  • x

    The X coordinate of the point to test.

  • y (defaults to: nil)

    The Y coordinate of the point to test.

Returns:

  • (Boolean)

    true if the point lies within the bound of



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 193

def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
  x, y = Point.normalize_point(x_or_point, y)
  return unless x && y

  x1 = points[0][0]
  y1 = points[0][1]
  xc = points[1][0]
  yc = points[1][1]
  x2 = points[2][0]
  y2 = points[2][1]
  
  if outline
    distance_tolerance = BigDecimal(distance_tolerance.to_s)
    minimum_distance_threshold = OUTLINE_MINIMUM_DISTANCE_THRESHOLD + distance_tolerance
    point_distance(x, y, minimum_distance_threshold: minimum_distance_threshold) < minimum_distance_threshold
  else
    # We have a convex shape bounded by quad curve Pc(t)
    # and ine Pl(t).
    #
    #     P1 = (x1, y1) - start point of curve
    #     P2 = (x2, y2) - end point of curve
    #     Pc = (xc, yc) - control point
    #
    #     Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 =
    #           = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1
    #     Pl(t) = P1*(1 - t) + P2*t
    #     t = [0:1]
    #
    #     P = (x, y) - point of interest
    #
    # Let's look at second derivative of quad curve equation:
    #
    #     Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq''
    #     It's constant vector.
    #
    # Let's draw a line through P to be parallel to this
    # vector and find the intersection of the quad curve
    # and the line.
    #
    # Pq(t) is point of intersection if system of equations
    # below has the solution.
    #
    #     L(s) = P + Pq''*s == Pq(t)
    #     Pq''*s + (P - Pq(t)) == 0
    #
    #     | xq''*s + (x - xq(t)) == 0
    #     | yq''*s + (y - yq(t)) == 0
    #
    # This system has the solution if rank of its matrix equals to 1.
    # That is, determinant of the matrix should be zero.
    #
    #     (y - yq(t))*xq'' == (x - xq(t))*yq''
    #
    # Let's solve this equation with 't' variable.
    # Also let kx = x1 - 2*xc + x2
    #          ky = y1 - 2*yc + y2
    #
    #     t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) /
    #                 ((xc - x1)*ky - (yc - y1)*kx)
    #
    # Let's do the same for our line Pl(t):
    #
    #     t0l = ((x - x1)*ky - (y - y1)*kx) /
    #           ((x2 - x1)*ky - (y2 - y1)*kx)
    #
    # It's easy to check that t0q == t0l. This fact means
    # we can compute t0 only one time.
    #
    # In case t0 < 0 or t0 > 1, we have an intersections outside
    # of shape bounds. So, P is definitely out of shape.
    #
    # In case t0 is inside [0:1], we should calculate Pq(t0)
    # and Pl(t0). We have three points for now, and all of them
    # lie on one line. So, we just need to detect, is our point
    # of interest between points of intersections or not.
    #
    # If the denominator in the t0q and t0l equations is
    # zero, then the points must be collinear and so the
    # curve is degenerate and encloses no area.  Thus the
    # result is false.
    kx = x1 - 2 * xc + x2
    ky = y1 - 2 * yc + y2
    dx = x - x1
    dy = y - y1
    dxl = x2 - x1
    dyl = y2 - y1
  
    t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx)
    return false if (t0 < 0 || t0 > 1 || t0 != t0)
  
    xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1
    yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1
    xl = dxl * t0 + x1
    yl = dyl * t0 + y1
  
    (x >= xb && x < xl) ||
      (x >= xl && x < xb) ||
      (y >= yb && y < yl) ||
      (y >= yl && y < yb)
  end
end

#curve_center_pointObject

The center point on the outline of the curve in Array format as pair of (x, y) coordinates



311
312
313
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 311

def curve_center_point
  subdivisions.last.points[0]
end

#curve_center_xObject

The center point x on the outline of the curve



316
317
318
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 316

def curve_center_x
  subdivisions.last.points[0][0]
end

#curve_center_yObject

The center point y on the outline of the curve



321
322
323
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 321

def curve_center_y
  subdivisions.last.points[0][1]
end

#intersect?(rectangle) ⇒ Boolean

Returns:

  • (Boolean)


388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 388

def intersect?(rectangle)
  x = rectangle.x
  y = rectangle.y
  w = rectangle.width
  h = rectangle.height
  
  # Trivially reject non-existant rectangles
  return false if w <= 0 || h <= 0

  # Trivially accept if either endpoint is inside the rectangle
  # (not on its border since it may end there and not go inside)
  # Record where they lie with respect to the rectangle.
  #     -1 => left, 0 => inside, 1 => right
  x1 = points[0][0]
  y1 = points[0][1]
  x1tag = QuadraticBezierCurve.tag(x1, x, x+w)
  y1tag = QuadraticBezierCurve.tag(y1, y, y+h)
  return true if x1tag == INSIDE && y1tag == INSIDE
  x2 = points[2][0]
  y2 = points[2][1]
  x2tag = QuadraticBezierCurve.tag(x2, x, x+w)
  y2tag = QuadraticBezierCurve.tag(y2, y, y+h)
  return true if x2tag == INSIDE && y2tag == INSIDE
  ctrlx = points[1][0]
  ctrly = points[1][1]
  ctrlxtag = QuadraticBezierCurve.tag(ctrlx, x, x+w)
  ctrlytag = QuadraticBezierCurve.tag(ctrly, y, y+h)

  # Trivially reject if all points are entirely to one side of
  # the rectangle.
  # Returning false means All points left
  return false if x1tag < INSIDE && x2tag < INSIDE && ctrlxtag < INSIDE
  # Returning false means All points above
  return false if y1tag < INSIDE && y2tag < INSIDE && ctrlytag < INSIDE
  # Returning false means All points right
  return false if x1tag > INSIDE && x2tag > INSIDE && ctrlxtag > INSIDE
  # Returning false means All points below
  return false if y1tag > INSIDE && y2tag > INSIDE && ctrlytag > INSIDE

  # Test for endpoints on the edge where either the segment
  # or the curve is headed "inwards" from them
  # Note: These tests are a superset of the fast endpoint tests
  #       above and thus repeat those tests, but take more time
  #       and cover more cases
  # First endpoint on border with either edge moving inside
  return true if inwards(x1tag, x2tag, ctrlxtag) && inwards(y1tag, y2tag, ctrlytag)
  # Second endpoint on border with either edge moving inside
  return true if inwards(x2tag, x1tag, ctrlxtag) && inwards(y2tag, y1tag, ctrlytag)

  # Trivially accept if endpoints span directly across the rectangle
  xoverlap = (x1tag * x2tag <= 0)
  yoverlap = (y1tag * y2tag <= 0)
  return true if x1tag == INSIDE && x2tag == INSIDE && yoverlap
  return true if y1tag == INSIDE && y2tag == INSIDE && xoverlap

  # We now know that both endpoints are outside the rectangle
  # but the 3 points are not all on one side of the rectangle.
  # Therefore the curve cannot be contained inside the rectangle,
  # but the rectangle might be contained inside the curve, or
  # the curve might intersect the boundary of the rectangle.

  eqn = nil
  res = []
  if !yoverlap
      # Both Y coordinates for the closing segment are above or
      # below the rectangle which means that we can only intersect
      # if the curve crosses the top (or bottom) of the rectangle
      # in more than one place and if those crossing locations
      # span the horizontal range of the rectangle.
      eqn = QuadraticBezierCurve.eqn((y1tag < INSIDE ? y : y+h), y1, ctrly, y2)
      return (QuadraticBezierCurve.solve_quadratic(eqn, res) == 2 &&
              QuadraticBezierCurve.eval_quadratic(res, 2, true, true, nil,
                            x1, ctrlx, x2) == 2 &&
              QuadraticBezierCurve.tag(res[0], x, x+w) * QuadraticBezierCurve.tag(res[1], x, x+w) <= 0)
  end

  # Y ranges overlap.  Now we examine the X ranges
  if !xoverlap
      # Both X coordinates for the closing segment are left of
      # or right of the rectangle which means that we can only
      # intersect if the curve crosses the left (or right) edge
      # of the rectangle in more than one place and if those
      # crossing locations span the vertical range of the rectangle.
      eqn = QuadraticBezierCurve.eqn((x1tag < INSIDE ? x : x+w), x1, ctrlx, x2)
      return (QuadraticBezierCurve.solve_quadratic(eqn, res) == 2 &&
              QuadraticBezierCurve.eval_quadratic(res, 2, true, true, nil,
                            y1, ctrly, y2) == 2 &&
              QuadraticBezierCurve.tag(res[0], y, y+h) * QuadraticBezierCurve.tag(res[1], y, y+h) <= 0)
  end

  # The X and Y ranges of the endpoints overlap the X and Y
  # ranges of the rectangle, now find out how the endpoint
  # line segment intersects the Y range of the rectangle
  dx = x2 - x1
  dy = y2 - y1
  k = y2 * x1 - x2 * y1
  c1tag = c2tag = nil
  if y1tag == INSIDE
    c1tag = x1tag
  else
    c1tag = QuadraticBezierCurve.tag((k + dx * (y1tag < INSIDE ? y : y+h)) / dy, x, x+w)
  end
  if y2tag == INSIDE
    c2tag = x2tag
  else
    c2tag = QuadraticBezierCurve.tag((k + dx * (y2tag < INSIDE ? y : y+h)) / dy, x, x+w)
  end
  # If the part of the line segment that intersects the Y range
  # of the rectangle crosses it horizontally - trivially accept
  return true if c1tag * c2tag <= 0

  # Now we know that both the X and Y ranges intersect and that
  # the endpoint line segment does not directly cross the rectangle.
  #
  # We can almost treat this case like one of the cases above
  # where both endpoints are to one side, except that we will
  # only get one intersection of the curve with the vertical
  # side of the rectangle.  This is because the endpoint segment
  # accounts for the other intersection.
  #
  # (Remember there is overlap in both the X and Y ranges which
  #  means that the segment must cross at least one vertical edge
  #  of the rectangle - in particular, the "near vertical side" -
  #  leaving only one intersection for the curve.)
  #
  # Now we calculate the y tags of the two intersections on the
  # "near vertical side" of the rectangle.  We will have one with
  # the endpoint segment, and one with the curve.  If those two
  # vertical intersections overlap the Y range of the rectangle,
  # we have an intersection.  Otherwise, we don't.

  # c1tag = vertical intersection class of the endpoint segment
  #
  # Choose the y tag of the endpoint that was not on the same
  # side of the rectangle as the subsegment calculated above.
  # Note that we can "steal" the existing Y tag of that endpoint
  # since it will be provably the same as the vertical intersection.
  c1tag = ((c1tag * x1tag <= 0) ? y1tag : y2tag)

  # c2tag = vertical intersection class of the curve
  #
  # We have to calculate this one the straightforward way.
  # Note that the c2tag can still tell us which vertical edge
  # to test against.
  eqn = QuadraticBezierCurve.eqn((c2tag < INSIDE ? x : x+w), x1, ctrlx, x2)
  num = QuadraticBezierCurve.solve_quadratic(eqn, res)

  # Note: We should be able to assert(num == 2) since the
  # X range "crosses" (not touches) the vertical boundary,
  # but we pass num to QuadraticBezierCurve.eval_quadratic for completeness.
  QuadraticBezierCurve.eval_quadratic(res, num, true, true, nil, y1, ctrly, y2)

  # Note: We can assert(num evals == 1) since one of the
  # 2 crossings will be out of the [0,1] range.
  c2tag = QuadraticBezierCurve.tag(res[0], y, y+h)

  # Finally, we have an intersection if the two crossings
  # overlap the Y range of the rectangle.
  c1tag * c2tag <= 0
end

#point_crossings(x_or_point, y = nil, level = 0) ⇒ Object

Calculates the number of times the quad crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing



303
304
305
306
307
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 303

def point_crossings(x_or_point, y = nil, level = 0)
  x, y = Point.normalize_point(x_or_point, y)
  return unless x && y
  QuadraticBezierCurve.point_crossings(points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1], x, y, level)
end

#point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) ⇒ Object



360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 360

def point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD)
  x, y = Point.normalize_point(x_or_point, y)
  return unless x && y
  
  point = Point.new(x, y)
  current_curve = self
  minimum_distance = point.point_distance(curve_center_point)
  last_minimum_distance = minimum_distance + 1 # start bigger to ensure going through loop once at least
  while minimum_distance >= minimum_distance_threshold && minimum_distance < last_minimum_distance
    curve1, curve2 = current_curve.subdivisions
    distance1 = point.point_distance(curve1.curve_center_point)
    distance2 = point.point_distance(curve2.curve_center_point)
    last_minimum_distance = minimum_distance
    if distance1 < distance2
      minimum_distance = distance1
      current_curve = curve1
    else
      minimum_distance = distance2
      current_curve = curve2
    end
  end
  if minimum_distance < minimum_distance_threshold
    minimum_distance
  else
    last_minimum_distance
  end
end

#rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0) ⇒ Object

Accumulate the number of times the quad crosses the shadow extending to the right of the rectangle. See the comment for the RECT_INTERSECTS constant for more complete details.

crossings arg is the initial crossings value to add to (useful in cases where you want to accumulate crossings from multiple shapes)



556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 556

def rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0)
  x0 = points[0][0]
  y0 = points[0][1]
  xc = points[1][0]
  yc = points[1][1]
  x1 = points[2][0]
  y1 = points[2][1]
  return crossings if y0 >= rymax && yc >= rymax && y1 >= rymax
  return crossings if y0 <= rymin && yc <= rymin && y1 <= rymin
  return crossings if x0 <= rxmin && xc <= rxmin && x1 <= rxmin
  if x0 >= rxmax && xc >= rxmax && x1 >= rxmax
    # Quad is entirely to the right of the rect
    # and the vertical range of the 3 Y coordinates of the quad
    # overlaps the vertical range of the rect by a non-empty amount
    # We now judge the crossings solely based on the line segment
    # connecting the endpoints of the quad.
    # Note that we may have 0, 1, or 2 crossings as the control
    # point may be causing the Y range intersection while the
    # two endpoints are entirely above or below.
    if y0 < y1
      # y-increasing line segment...
      crossings += 1 if y0 <= rymin && y1 >  rymin
      crossings += 1 if y0 <  rymax && y1 >= rymax
    elsif y1 < y0
      # y-decreasing line segment...
      crossings -= 1 if y1 <= rymin && y0 >  rymin
      crossings -= 1 if y1 <  rymax && y0 >= rymax
    end
    return crossings
  end
  # The intersection of ranges is more complicated
  # First do trivial INTERSECTS rejection of the cases
  # where one of the endpoints is inside the rectangle.
  return PerfectShape::Rectangle::RECT_INTERSECTS if (x0 < rxmax && x0 > rxmin && y0 < rymax && y0 > rymin) ||
    (x1 < rxmax && x1 > rxmin && y1 < rymax && y1 > rymin)
  # Otherwise, subdivide and look for one of the cases above.
  # double precision only has 52 bits of mantissa
  if level > 52
    line = PerfectShape::Line.new(points: [x0, y0, x1, y1])
    return line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings)
  end
  x0c = BigDecimal((x0 + xc).to_s) / 2
  y0c = BigDecimal((y0 + yc).to_s) / 2
  xc1 = BigDecimal((xc + x1).to_s) / 2
  yc1 = BigDecimal((yc + y1).to_s) / 2
  xc = BigDecimal((x0c + xc1).to_s) / 2
  yc = BigDecimal((y0c + yc1).to_s) / 2
  # [xy]c are NaN if any of [xy]0c or [xy]c1 are NaN
  # [xy]0c or [xy]c1 are NaN if any of [xy][0c1] are NaN
  # These values are also NaN if opposing infinities are added
  return 0 if xc.nan? || yc.nan?
  quad1 = QuadraticBezierCurve.new(points: [x0, y0, x0c, y0c, xc, yc])
  crossings = quad1.rect_crossings(rxmin, rymin, rxmax, rymax, level+1, crossings)
  if crossings != PerfectShape::Rectangle::RECT_INTERSECTS
    quad2 = QuadraticBezierCurve.new(points: [xc, yc, xc1, yc1, x1, y1])
    crossings = quad2.rect_crossings(rxmin, rymin, rxmax, rymax, level+1, crossings)
  end
  crossings
end

#subdivisions(level = 1) ⇒ Object

Subdivides QuadraticBezierCurve exactly at its curve center returning 2 QuadraticBezierCurve’s as a two-element Array by default

Optional ‘level` parameter specifies the level of recursions to perform to get more subdivisions. The number of resulting subdivisions is 2 to the power of `level` (e.g. 2 subdivisions for level=1, 4 subdivisions for level=2, and 8 subdivisions for level=3)



332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 332

def subdivisions(level = 1)
  level -= 1 # consume 1 level
  
  x1 = points[0][0]
  y1 = points[0][1]
  ctrlx = points[1][0]
  ctrly = points[1][1]
  x2 = points[2][0]
  y2 = points[2][1]
  ctrlx1 = BigDecimal((x1 + ctrlx).to_s) / 2
  ctrly1 = BigDecimal((y1 + ctrly).to_s) / 2
  ctrlx2 = BigDecimal((x2 + ctrlx).to_s) / 2
  ctrly2 = BigDecimal((y2 + ctrly).to_s) / 2
  centerx = BigDecimal((ctrlx1 + ctrlx2).to_s) / 2
  centery = BigDecimal((ctrly1 + ctrly2).to_s) / 2
  
  default_subdivisions = [
    QuadraticBezierCurve.new(points: [x1, y1, ctrlx1, ctrly1, centerx, centery]),
    QuadraticBezierCurve.new(points: [centerx, centery, ctrlx2, ctrly2, x2, y2])
  ]
  
  if level == 0
    default_subdivisions
  else
    default_subdivisions.map { |curve| curve.subdivisions(level) }.flatten
  end
end