Class: PerfectShape::Path
- Includes:
- MultiPoint
- Defined in:
- lib/perfect_shape/path.rb
Constant Summary collapse
- SHAPE_TYPES =
Available class types for path shapes
[Array, PerfectShape::Point, PerfectShape::Line, PerfectShape::QuadraticBezierCurve, PerfectShape::CubicBezierCurve, PerfectShape::Arc, PerfectShape::Ellipse, PerfectShape::Circle]
- WINDING_RULES =
Available winding rules
[:wind_even_odd, :wind_non_zero]
Instance Attribute Summary collapse
-
#closed ⇒ Object
(also: #closed?)
Returns the value of attribute closed.
-
#line_to_complex_shapes ⇒ Object
(also: #line_to_complex_shapes?)
Returns the value of attribute line_to_complex_shapes.
-
#shapes ⇒ Object
Returns the value of attribute shapes.
-
#winding_rule ⇒ Object
Returns the value of attribute winding_rule.
Instance Method Summary collapse
-
#basic_shapes ⇒ Object
Returns basic shapes (i.e. Point, Line, QuadraticBezierCurve, and CubicBezierCurve), decomposed from complex shapes like Arc, Ellipse, and Circle by calling their ‘#to_path_shapes` method.
-
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if path contains point (two-number Array or x, y args) using the Nonzero-Rule (aka Winding Number Algorithm): en.wikipedia.org/wiki/Nonzero-rule or using the Even-Odd Rule (aka Ray Casting Algorithm): en.wikipedia.org/wiki/Even%E2%80%93odd_rule.
-
#disconnected_shapes ⇒ Object
Disconnected shapes have their start point filled in so that each shape does not depend on the previous shape to determine its start point.
- #drawing_types ⇒ Object
-
#initialize(shapes: [], closed: false, winding_rule: :wind_even_odd, line_to_complex_shapes: false) ⇒ Path
constructor
Constructs Path with winding rule, closed status, line_to_complex_shapes option, and shapes (must always start with PerfectShape::Point or Array of [x,y] coordinates) Shape class types can be any of SHAPE_TYPES: Array (x,y coordinates), PerfectShape::Point, PerfectShape::Line, PerfectShape::QuadraticBezierCurve, PerfectShape::CubicBezierCurve PerfectShape::Arc, PerfectShape::Ellipse, or PerfectShape::Circle Complex shapes, meaning Arc, Ellipse, and Circle, are decomposed into basic path shapes, meaning Point, Line, QuadraticBezierCurve, and CubicBezierCurve.
- #intersect?(rectangle) ⇒ Boolean
-
#point_crossings(x_or_point, y = nil) ⇒ Object
Calculates the number of times the given path crosses the ray extending to the right from (x,y).
- #points ⇒ Object
- #points=(some_points) ⇒ Object
- #rect_crossings(rxmin, rymin, rxmax, rymax) ⇒ Object
Methods included from MultiPoint
#max_x, #max_y, #min_x, #min_y, normalize_point_array
Methods inherited from Shape
#==, #bounding_box, #center_point, #center_x, #center_y, #height, #max_x, #max_y, #min_x, #min_y, #width
Constructor Details
#initialize(shapes: [], closed: false, winding_rule: :wind_even_odd, line_to_complex_shapes: false) ⇒ Path
Constructs Path with winding rule, closed status, line_to_complex_shapes option, and shapes (must always start with PerfectShape::Point or Array of [x,y] coordinates) Shape class types can be any of SHAPE_TYPES: Array (x,y coordinates), PerfectShape::Point, PerfectShape::Line, PerfectShape::QuadraticBezierCurve, PerfectShape::CubicBezierCurve PerfectShape::Arc, PerfectShape::Ellipse, or PerfectShape::Circle Complex shapes, meaning Arc, Ellipse, and Circle, are decomposed into basic path shapes, meaning Point, Line, QuadraticBezierCurve, and CubicBezierCurve. winding_rule can be any of WINDING_RULES: :wind_non_zero (default) or :wind_even_odd closed can be true or false (default) line_to_complex_shapes can be true or false (default), indicating whether to connect to complex shapes, meaning Arc, Ellipse, and Circle, with a line, or otherwise move to their start point instead.
53 54 55 56 57 58 |
# File 'lib/perfect_shape/path.rb', line 53 def initialize(shapes: [], closed: false, winding_rule: :wind_even_odd, line_to_complex_shapes: false) self.closed = closed self.winding_rule = winding_rule self.shapes = shapes self.line_to_complex_shapes = line_to_complex_shapes end |
Instance Attribute Details
#closed ⇒ Object Also known as: closed?
Returns the value of attribute closed.
41 42 43 |
# File 'lib/perfect_shape/path.rb', line 41 def closed @closed end |
#line_to_complex_shapes ⇒ Object Also known as: line_to_complex_shapes?
Returns the value of attribute line_to_complex_shapes.
41 42 43 |
# File 'lib/perfect_shape/path.rb', line 41 def line_to_complex_shapes @line_to_complex_shapes end |
#shapes ⇒ Object
Returns the value of attribute shapes.
41 42 43 |
# File 'lib/perfect_shape/path.rb', line 41 def shapes @shapes end |
#winding_rule ⇒ Object
Returns the value of attribute winding_rule.
40 41 42 |
# File 'lib/perfect_shape/path.rb', line 40 def winding_rule @winding_rule end |
Instance Method Details
#basic_shapes ⇒ Object
Returns basic shapes (i.e. Point, Line, QuadraticBezierCurve, and CubicBezierCurve), decomposed from complex shapes like Arc, Ellipse, and Circle by calling their ‘#to_path_shapes` method
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# File 'lib/perfect_shape/path.rb', line 384 def basic_shapes the_shapes = [] @shapes.each do |shape| if shape.respond_to?(:to_path_shapes) shape_basic_shapes = shape.to_path_shapes if @line_to_complex_shapes first_basic_shape = shape_basic_shapes.shift new_first_basic_shape = PerfectShape::Line.new(points: [first_basic_shape.to_a]) shape_basic_shapes.unshift(new_first_basic_shape) end the_shapes += shape_basic_shapes else the_shapes << shape end end the_shapes end |
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ Boolean
Checks if path contains point (two-number Array or x, y args) using the Nonzero-Rule (aka Winding Number Algorithm): en.wikipedia.org/wiki/Nonzero-rule or using the Even-Odd Rule (aka Ray Casting Algorithm): en.wikipedia.org/wiki/Even%E2%80%93odd_rule
the path or false if the point lies outside of the path’s bounds.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# File 'lib/perfect_shape/path.rb', line 122 def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y if outline disconnected_shapes.any? {|shape| shape.contain?(x, y, outline: true, distance_tolerance: distance_tolerance) } else if (x * 0.0 + y * 0.0) == 0.0 # N * 0.0 is 0.0 only if N is finite. # Here we know that both x and y are finite. return false if shapes.count < 2 mask = winding_rule == :wind_non_zero ? -1 : 1 (point_crossings(x, y) & mask) != 0 else # Either x or y was infinite or NaN. # A NaN always produces a negative response to any test # and Infinity values cannot be "inside" any path so # they should return false as well. false end end end |
#disconnected_shapes ⇒ Object
Disconnected shapes have their start point filled in so that each shape does not depend on the previous shape to determine its start point.
Also, if a point is followed by a non-point shape, it is removed since it is augmented to the following shape as its start point.
Lastly, if the path is closed, an extra shape is added to represent the line connecting the last point to the first
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# File 'lib/perfect_shape/path.rb', line 241 def disconnected_shapes initial_point = start_point = basic_shapes.first.to_a.map {|n| BigDecimal(n.to_s)} final_point = nil the_disconnected_shapes = basic_shapes.drop(1).map do |shape| case shape when Point disconnected_shape = Point.new(*shape.to_a) start_point = shape.to_a final_point = disconnected_shape.to_a nil when Array disconnected_shape = Point.new(*shape.map {|n| BigDecimal(n.to_s)}) start_point = shape.map {|n| BigDecimal(n.to_s)} final_point = disconnected_shape.to_a nil when Line disconnected_shape = Line.new(points: [start_point.to_a, shape.points.last]) start_point = shape.points.last.to_a final_point = disconnected_shape.points.last.to_a disconnected_shape when QuadraticBezierCurve disconnected_shape = QuadraticBezierCurve.new(points: [start_point.to_a] + shape.points) start_point = shape.points.last.to_a final_point = disconnected_shape.points.last.to_a disconnected_shape when CubicBezierCurve disconnected_shape = CubicBezierCurve.new(points: [start_point.to_a] + shape.points) start_point = shape.points.last.to_a final_point = disconnected_shape.points.last.to_a disconnected_shape end end the_disconnected_shapes << Line.new(points: [final_point, initial_point]) if closed? the_disconnected_shapes.compact end |
#drawing_types ⇒ Object
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# File 'lib/perfect_shape/path.rb', line 88 def drawing_types the_drawing_shapes = basic_shapes.map do |shape| case shape when Point :move_to when Array :move_to when Line :line_to when QuadraticBezierCurve :quad_to when CubicBezierCurve :cubic_to end end the_drawing_shapes << :close if closed? the_drawing_shapes end |
#intersect?(rectangle) ⇒ Boolean
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/perfect_shape/path.rb', line 277 def intersect?(rectangle) x = rectangle.x y = rectangle.y w = rectangle.width h = rectangle.height # [xy]+[wh] is NaN if any of those values are NaN, # or if adding the two together would produce NaN # by virtue of adding opposing Infinte values. # Since we need to add them below, their sum must # not be NaN. # We return false because NaN always produces a # negative response to tests return false if (x+w).nan? || (y+h).nan? return false if w <= 0 || h <= 0 mask = winding_rule == :wind_non_zero ? -1 : 2 crossings = rect_crossings(x, y, x+w, y+h) crossings == PerfectShape::Rectangle::RECT_INTERSECTS || (crossings & mask) != 0 end |
#point_crossings(x_or_point, y = nil) ⇒ Object
Calculates the number of times the given path crosses the ray extending to the right from (x,y). If the point lies on a part of the path, then no crossings are counted for that intersection. +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing The return value is the sum of all crossings for every segment in the path. The path must start with a PerfectShape::Point (initial location) The caller must check for NaN values. The caller may also reject infinite values as well.
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# File 'lib/perfect_shape/path.rb', line 156 def point_crossings(x_or_point, y = nil) x, y = Point.normalize_point(x_or_point, y) return unless x && y return 0 if shapes.count == 0 movx = movy = curx = cury = endx = endy = 0 coords = points.flatten curx = movx = coords[0] cury = movy = coords[1] crossings = 0 ci = 2 1.upto(shapes.count - 1).each do |i| case drawing_types[i] when :move_to if cury != movy line = PerfectShape::Line.new(points: [[curx, cury], [movx, movy]]) crossings += line.point_crossings(x, y) end movx = curx = coords[ci] ci += 1 movy = cury = coords[ci] ci += 1 when :line_to endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 line = PerfectShape::Line.new(points: [[curx, cury], [endx, endy]]) crossings += line.point_crossings(x, y) curx = endx cury = endy when :quad_to quad_ctrlx = coords[ci] ci += 1 quad_ctrly = coords[ci] ci += 1 endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 quad = PerfectShape::QuadraticBezierCurve.new(points: [[curx, cury], [quad_ctrlx, quad_ctrly], [endx, endy]]) crossings += quad.point_crossings(x, y) curx = endx cury = endy when :cubic_to cubic_ctrl1x = coords[ci] ci += 1 cubic_ctrl1y = coords[ci] ci += 1 cubic_ctrl2x = coords[ci] ci += 1 cubic_ctrl2y = coords[ci] ci += 1 endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 cubic = PerfectShape::CubicBezierCurve.new(points: [[curx, cury], [cubic_ctrl1x, cubic_ctrl1y], [cubic_ctrl2x, cubic_ctrl2y], [endx, endy]]) crossings += cubic.point_crossings(x, y) curx = endx cury = endy when :close if cury != movy line = PerfectShape::Line.new(points: [[curx, cury], [movx, movy]]) crossings += line.point_crossings(x, y) end curx = movx cury = movy end end if cury != movy line = PerfectShape::Line.new(points: [[curx, cury], [movx, movy]]) crossings += line.point_crossings(x, y) end crossings end |
#points ⇒ Object
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# File 'lib/perfect_shape/path.rb', line 60 def points the_points = [] basic_shapes.each do |shape| case shape when Point the_points << shape.to_a when Array the_points << shape.map {|n| BigDecimal(n.to_s)} when Line the_points << shape.points.last.to_a when QuadraticBezierCurve shape.points.each do |point| the_points << point.to_a end when CubicBezierCurve shape.points.each do |point| the_points << point.to_a end end end the_points << basic_shapes.first.to_a if closed? the_points end |
#points=(some_points) ⇒ Object
84 85 86 |
# File 'lib/perfect_shape/path.rb', line 84 def points=(some_points) raise "Cannot assign points directly! Must set shapes instead and points are calculated from them automatically." end |
#rect_crossings(rxmin, rymin, rxmax, rymax) ⇒ Object
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# File 'lib/perfect_shape/path.rb', line 297 def rect_crossings(rxmin, rymin, rxmax, rymax) numTypes = drawing_types.count return 0 if numTypes == 0 coords = points.flatten curx = cury = movx = movy = endx = endy = nil curx = movx = coords[0] cury = movy = coords[1] crossings = 0 ci = 2 i = 1 while crossings != PerfectShape::Rectangle::RECT_INTERSECTS && i < numTypes case drawing_types[i] when :move_to if curx != movx || cury != movy line = PerfectShape::Line.new(points: [curx, cury, movx, movy]) crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings) end # Count should always be a multiple of 2 here. # assert((crossings & 1) != 0) movx = curx = coords[ci] ci += 1 movy = cury = coords[ci] ci += 1 when :line_to endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 line = PerfectShape::Line.new(points: [curx, cury, endx, endy]) crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings) curx = endx cury = endy when :quad_to cx = coords[ci] ci += 1 cy = coords[ci] ci += 1 endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 quadratic_bezier_curve = PerfectShape::QuadraticBezierCurve.new(points: [curx, cury, cx, cy, endx, endy]) crossings = quadratic_bezier_curve.rect_crossings(rxmin, rymin, rxmax, rymax, 0, crossings) curx = endx cury = endy when :cubic_to c1x = coords[ci] ci += 1 c1y = coords[ci] ci += 1 c2x = coords[ci] ci += 1 c2y = coords[ci] ci += 1 endx = coords[ci] ci += 1 endy = coords[ci] ci += 1 cubic_bezier_curve = PerfectShape::CubicBezierCurve.new(points: [curx, cury, c1x, c1y, c2x, c2y, endx, endy]) crossings = cubic_bezier_curve.rect_crossings(rxmin, rymin, rxmax, rymax, 0, crossings) curx = endx cury = endy when :close if curx != movx || cury != movy line = PerfectShape::Line.new(points: [curx, cury, movx, movy]) crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings) end curx = movx cury = movy # Count should always be a multiple of 2 here. # assert((crossings & 1) != 0) end i += 1 end if crossings != PerfectShape::Rectangle::RECT_INTERSECTS && (curx != movx || cury != movy) line = PerfectShape::Line.new(points: [curx, cury, movx, movy]) crossings = line.rect_crossings(rxmin, rymin, rxmax, rymax, crossings) end # Count should always be a multiple of 2 here. # assert((crossings & 1) != 0) crossings end |