Class: PerfectShape::QuadraticBezierCurve
- Includes:
- MultiPoint
- Defined in:
- lib/perfect_shape/quadratic_bezier_curve.rb
Constant Summary collapse
- OUTLINE_MINIMUM_DISTANCE_THRESHOLD =
BigDecimal('0.001')
Instance Attribute Summary
Attributes included from MultiPoint
Class Method Summary collapse
-
.point_crossings(x1, y1, xc, yc, x2, y2, px, py, level = 0) ⇒ Object
Calculates the number of times the quadratic bézier curve from (x1,y1) to (x2,y2) crosses the ray extending to the right from (x,y).
Instance Method Summary collapse
-
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ @code true
Checks if quadratic bézier curve contains point (two-number Array or x, y args).
-
#curve_center_point ⇒ Object
The center point on the outline of the curve in Array format as pair of (x, y) coordinates.
-
#curve_center_x ⇒ Object
The center point x on the outline of the curve.
-
#curve_center_y ⇒ Object
The center point y on the outline of the curve.
-
#point_crossings(x_or_point, y = nil, level = 0) ⇒ Object
Calculates the number of times the quad crosses the ray extending to the right from (x,y).
- #point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) ⇒ Object
-
#subdivisions(level = 1) ⇒ Object
Subdivides QuadraticBezierCurve exactly at its curve center returning 2 QuadraticBezierCurve’s as a two-element Array by default.
Methods included from MultiPoint
#initialize, #max_x, #max_y, #min_x, #min_y, normalize_point_array
Methods inherited from Shape
#==, #bounding_box, #center_point, #center_x, #center_y, #height, #max_x, #max_y, #min_x, #min_y, #width
Class Method Details
.point_crossings(x1, y1, xc, yc, x2, y2, px, py, level = 0) ⇒ Object
Calculates the number of times the quadratic bézier curve from (x1,y1) to (x2,y2) crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 37 def point_crossings(x1, y1, xc, yc, x2, y2, px, py, level = 0) return 0 if (py < y1 && py < yc && py < y2) return 0 if (py >= y1 && py >= yc && py >= y2) # Note y1 could equal y2... return 0 if (px >= x1 && px >= xc && px >= x2) if (px < x1 && px < xc && px < x2) if (py >= y1) return 1 if (py < y2) else # py < y1 return -1 if (py >= y2) end # py outside of y11 range, and/or y1==y2 return 0 end # double precision only has 52 bits of mantissa return PerfectShape::Line.point_crossings(x1, y1, x2, y2, px, py) if (level > 52) x1c = BigDecimal((x1 + xc).to_s) / 2 y1c = BigDecimal((y1 + yc).to_s) / 2 xc1 = BigDecimal((xc + x2).to_s) / 2 yc1 = BigDecimal((yc + y2).to_s) / 2 xc = BigDecimal((x1c + xc1).to_s) / 2 yc = BigDecimal((y1c + yc1).to_s) / 2 # [xy]c are NaN if any of [xy]0c or [xy]c1 are NaN # [xy]0c or [xy]c1 are NaN if any of [xy][0c1] are NaN # These values are also NaN if opposing infinities are added return 0 if (xc.nan? || yc.nan?) point_crossings(x1, y1, x1c, y1c, xc, yc, px, py, level+1) + point_crossings(xc, yc, xc1, yc1, x2, y2, px, py, level+1); end |
Instance Method Details
#contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) ⇒ @code true
Checks if quadratic bézier curve contains point (two-number Array or x, y args)
the quadratic bézier curve, false if the point lies outside of the quadratic bézier curve’s bounds.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 82 def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y x1 = points[0][0] y1 = points[0][1] xc = points[1][0] yc = points[1][1] x2 = points[2][0] y2 = points[2][1] if outline distance_tolerance = BigDecimal(distance_tolerance.to_s) minimum_distance_threshold = OUTLINE_MINIMUM_DISTANCE_THRESHOLD + distance_tolerance point_distance(x, y, minimum_distance_threshold: minimum_distance_threshold) < minimum_distance_threshold else # We have a convex shape bounded by quad curve Pc(t) # and ine Pl(t). # # P1 = (x1, y1) - start point of curve # P2 = (x2, y2) - end point of curve # Pc = (xc, yc) - control point # # Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 = # = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1 # Pl(t) = P1*(1 - t) + P2*t # t = [0:1] # # P = (x, y) - point of interest # # Let's look at second derivative of quad curve equation: # # Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq'' # It's constant vector. # # Let's draw a line through P to be parallel to this # vector and find the intersection of the quad curve # and the line. # # Pq(t) is point of intersection if system of equations # below has the solution. # # L(s) = P + Pq''*s == Pq(t) # Pq''*s + (P - Pq(t)) == 0 # # | xq''*s + (x - xq(t)) == 0 # | yq''*s + (y - yq(t)) == 0 # # This system has the solution if rank of its matrix equals to 1. # That is, determinant of the matrix should be zero. # # (y - yq(t))*xq'' == (x - xq(t))*yq'' # # Let's solve this equation with 't' variable. # Also let kx = x1 - 2*xc + x2 # ky = y1 - 2*yc + y2 # # t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) / # ((xc - x1)*ky - (yc - y1)*kx) # # Let's do the same for our line Pl(t): # # t0l = ((x - x1)*ky - (y - y1)*kx) / # ((x2 - x1)*ky - (y2 - y1)*kx) # # It's easy to check that t0q == t0l. This fact means # we can compute t0 only one time. # # In case t0 < 0 or t0 > 1, we have an intersections outside # of shape bounds. So, P is definitely out of shape. # # In case t0 is inside [0:1], we should calculate Pq(t0) # and Pl(t0). We have three points for now, and all of them # lie on one line. So, we just need to detect, is our point # of interest between points of intersections or not. # # If the denominator in the t0q and t0l equations is # zero, then the points must be collinear and so the # curve is degenerate and encloses no area. Thus the # result is false. kx = x1 - 2 * xc + x2; ky = y1 - 2 * yc + y2; dx = x - x1; dy = y - y1; dxl = x2 - x1; dyl = y2 - y1; t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx) return false if (t0 < 0 || t0 > 1 || t0 != t0) xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1; yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1; xl = dxl * t0 + x1; yl = dyl * t0 + y1; (x >= xb && x < xl) || (x >= xl && x < xb) || (y >= yb && y < yl) || (y >= yl && y < yb) end end |
#curve_center_point ⇒ Object
The center point on the outline of the curve in Array format as pair of (x, y) coordinates
200 201 202 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 200 def curve_center_point subdivisions.last.points[0] end |
#curve_center_x ⇒ Object
The center point x on the outline of the curve
205 206 207 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 205 def curve_center_x subdivisions.last.points[0][0] end |
#curve_center_y ⇒ Object
The center point y on the outline of the curve
210 211 212 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 210 def curve_center_y subdivisions.last.points[0][1] end |
#point_crossings(x_or_point, y = nil, level = 0) ⇒ Object
Calculates the number of times the quad crosses the ray extending to the right from (x,y). If the point lies on a part of the curve, then no crossings are counted for that intersection. the level parameter should be 0 at the top-level call and will count up for each recursion level to prevent infinite recursion +1 is added for each crossing where the Y coordinate is increasing -1 is added for each crossing where the Y coordinate is decreasing
192 193 194 195 196 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 192 def point_crossings(x_or_point, y = nil, level = 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y QuadraticBezierCurve.point_crossings(points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1], x, y, level) end |
#point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) ⇒ Object
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 249 def point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) x, y = Point.normalize_point(x_or_point, y) return unless x && y point = Point.new(x, y) current_curve = self minimum_distance = point.point_distance(curve_center_point) last_minimum_distance = minimum_distance + 1 # start bigger to ensure going through loop once at least while minimum_distance >= minimum_distance_threshold && minimum_distance < last_minimum_distance curve1, curve2 = current_curve.subdivisions distance1 = point.point_distance(curve1.curve_center_point) distance2 = point.point_distance(curve2.curve_center_point) last_minimum_distance = minimum_distance if distance1 < distance2 minimum_distance = distance1 current_curve = curve1 else minimum_distance = distance2 current_curve = curve2 end end if minimum_distance < minimum_distance_threshold minimum_distance else last_minimum_distance end end |
#subdivisions(level = 1) ⇒ Object
Subdivides QuadraticBezierCurve exactly at its curve center returning 2 QuadraticBezierCurve’s as a two-element Array by default
Optional ‘level` parameter specifies the level of recursions to perform to get more subdivisions. The number of resulting subdivisions is 2 to the power of `level` (e.g. 2 subdivisions for level=1, 4 subdivisions for level=2, and 8 subdivisions for level=3)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'lib/perfect_shape/quadratic_bezier_curve.rb', line 221 def subdivisions(level = 1) level -= 1 # consume 1 level x1 = points[0][0] y1 = points[0][1] ctrlx = points[1][0] ctrly = points[1][1] x2 = points[2][0] y2 = points[2][1] ctrlx1 = BigDecimal((x1 + ctrlx).to_s) / 2 ctrly1 = BigDecimal((y1 + ctrly).to_s) / 2 ctrlx2 = BigDecimal((x2 + ctrlx).to_s) / 2 ctrly2 = BigDecimal((y2 + ctrly).to_s) / 2 centerx = BigDecimal((ctrlx1 + ctrlx2).to_s) / 2 centery = BigDecimal((ctrly1 + ctrly2).to_s) / 2 default_subdivisions = [ QuadraticBezierCurve.new(points: [x1, y1, ctrlx1, ctrly1, centerx, centery]), QuadraticBezierCurve.new(points: [centerx, centery, ctrlx2, ctrly2, x2, y2]) ] if level == 0 default_subdivisions else default_subdivisions.map { |curve| curve.subdivisions(level) }.flatten end end |