Module: PerfectShape::Math
- Defined in:
- lib/perfect_shape/math.rb
Overview
Perfect Shape Math utility methods Mostly ported from java.lang.Math: docs.oracle.com/javase/8/docs/api/java/lang/Math.html Also includes standard Ruby ::Math utility methods
Class Method Summary collapse
- .const_missing(constant) ⇒ Object
-
.degrees_to_radians(degrees) ⇒ Object
converts angle from degrees to radians.
-
.ieee754_remainder(x, y) ⇒ Object
(also: ieee_remainder)
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
- .method_missing(method_name, *args, **kwargs, &block) ⇒ Object
-
.radians_to_degrees(radians) ⇒ Object
converts angle from radians to degrees.
- .respond_to?(method_name, include_private = false) ⇒ Boolean
Class Method Details
.const_missing(constant) ⇒ Object
58 59 60 |
# File 'lib/perfect_shape/math.rb', line 58 def const_missing(constant) ::Math::const_get(constant) end |
.degrees_to_radians(degrees) ⇒ Object
converts angle from degrees to radians
13 14 15 |
# File 'lib/perfect_shape/math.rb', line 13 def degrees_to_radians(degrees) (Math::PI/180)*degrees end |
.ieee754_remainder(x, y) ⇒ Object Also known as: ieee_remainder
Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard. Algorithm: x – (round(x/y)*y). The round part rounds to the nearest even number when it is a halfway between n & y (integer + 0.5 number) The remainder value is mathematically equal to x - y × n, where n is the mathematical integer closest to the exact mathematical value of the quotient x/y, and if two mathematical integers are equally close to x/y, then n is the integer that is even. If the remainder is zero, its sign is the same as the sign of the first argument. Special cases: If either argument is NaN, or the first argument is infinite, or the second argument is positive zero or negative zero, then the result is NaN. If the first argument is finite and the second argument is infinite, then the result is the same as the first argument. Parameters: x - the dividend. y - the divisor. Returns: the remainder when x is divided by y.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/perfect_shape/math.rb', line 28 def ieee754_remainder(x, y) x = BigDecimal(x.to_s) y = BigDecimal(y.to_s) return BigDecimal::NAN if x.nan? || y.nan? || x.infinite? || y.zero? return x if x.finite? && y.infinite? division = x / y rounded_division_low = BigDecimal(division.floor) rounded_division_high = BigDecimal(division.ceil) rounded_division_half = rounded_division_low + 0.5 rounded_division = if division == rounded_division_half rounded_division_low.to_i.even? ? rounded_division_low : rounded_division_high else BigDecimal(division.round) end (x - (rounded_division * y)) end |
.method_missing(method_name, *args, **kwargs, &block) ⇒ Object
50 51 52 53 54 55 56 |
# File 'lib/perfect_shape/math.rb', line 50 def method_missing(method_name, *args, **kwargs, &block) if ::Math.respond_to?(method_name, true) ::Math.send(method_name, *args, **kwargs, &block) else super end end |
.radians_to_degrees(radians) ⇒ Object
converts angle from radians to degrees
8 9 10 |
# File 'lib/perfect_shape/math.rb', line 8 def radians_to_degrees(radians) (180/Math::PI)*radians end |
.respond_to?(method_name, include_private = false) ⇒ Boolean
46 47 48 |
# File 'lib/perfect_shape/math.rb', line 46 def respond_to?(method_name, include_private = false) super || ::Math.respond_to?(method_name, include_private) end |