Module: OptionLab::Support
- Defined in:
- lib/option_lab/support.rb
Class Method Summary collapse
-
._get_array_price_from_BS(inputs, n) ⇒ Numo::DFloat
private
Generate array of prices using Black-Scholes model.
-
._get_array_price_from_laplace(inputs, n) ⇒ Numo::DFloat
private
Generate array of prices using Laplace distribution.
-
._get_payoff(option_type, s, x) ⇒ Numo::DFloat
private
Calculate option payoff at expiration.
-
._get_pl_option(option_type, opvalue, action, s, x) ⇒ Numo::DFloat
private
Calculate P/L of an option at expiration.
-
._get_pl_stock(s0, action, s) ⇒ Numo::DFloat
private
Calculate P/L of a stock position.
-
._get_pop_array(inputs, target) ⇒ Array<Float, Float, Float, Float>
private
Calculate PoP using array of terminal prices.
-
._get_pop_bs(s, profit, inputs, profit_range) ⇒ Array<Float, Float, Float, Float>
private
Calculate PoP using Black-Scholes model.
-
._get_profit_range(s, profit, target = 0.01) ⇒ Array<Array<Array<Float>>>
private
Find profit/loss ranges.
-
._get_sign_changes(profit, target) ⇒ Array<Integer>
private
Find indices where profit crosses target.
-
.create_price_array(inputs_data, n: 100_000, seed: nil) ⇒ Numo::DFloat
Create price array for simulations.
-
.create_price_seq(min_price, max_price) ⇒ Numo::DFloat
Generate a sequence of stock prices from min to max with $0.01 increment.
-
.get_pl_profile(option_type, action, x, val, n, s, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of an options trade at expiration.
-
.get_pl_profile_bs(option_type, action, x, val, r, target_to_maturity_years, volatility, n, s, y = 0.0, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of an options trade before expiration using Black-Scholes.
-
.get_pl_profile_stock(s0, action, n, s, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of a stock position.
-
.get_pop(s, profit, inputs_data, target = 0.01) ⇒ Models::PoPOutputs
Estimate probability of profit.
Class Method Details
._get_array_price_from_BS(inputs, n) ⇒ Numo::DFloat (private)
Generate array of prices using Black-Scholes model
437 438 439 440 441 442 443 444 445 446 447 448 449 |
# File 'lib/option_lab/support.rb', line 437 def _get_array_price_from_BS(inputs, n) # Calculate mean and std mean = Math.log(inputs.stock_price) + (inputs.interest_rate - inputs.dividend_yield - 0.5 * inputs.volatility**2) * inputs.years_to_target_date std = inputs.volatility * Math.sqrt(inputs.years_to_target_date) # Generate random values random_values = Numo::DFloat.new(n).rand_norm(0, 1) # Apply formula Numo::NMath.exp(mean + std * random_values) end |
._get_array_price_from_laplace(inputs, n) ⇒ Numo::DFloat (private)
Generate array of prices using Laplace distribution
455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# File 'lib/option_lab/support.rb', line 455 def _get_array_price_from_laplace(inputs, n) # Calculate location and scale location = Math.log(inputs.stock_price) + inputs.mu * inputs.years_to_target_date scale = (inputs.volatility * Math.sqrt(inputs.years_to_target_date)) / Math.sqrt(2.0) # Generate random values from uniform distribution u = Numo::DFloat.new(n).rand - 0.5 # Convert to Laplace distribution laplace_values = location - scale * u.abs.map { |v| v < 0 ? -1 : 1 } * Numo::NMath.log(1 - 2 * u.abs) # Apply formula Numo::NMath.exp(laplace_values) end |
._get_payoff(option_type, s, x) ⇒ Numo::DFloat (private)
Calculate option payoff at expiration
225 226 227 228 229 230 231 232 233 234 235 |
# File 'lib/option_lab/support.rb', line 225 def _get_payoff(option_type, s, x) if option_type == 'call' diff = s - x (diff + diff.abs) / 2.0 elsif option_type == 'put' diff = x - s (diff + diff.abs) / 2.0 else raise ArgumentError, "Option type must be either 'call' or 'put'!" end end |
._get_pl_option(option_type, opvalue, action, s, x) ⇒ Numo::DFloat (private)
Calculate P/L of an option at expiration
210 211 212 213 214 215 216 217 218 |
# File 'lib/option_lab/support.rb', line 210 def _get_pl_option(option_type, opvalue, action, s, x) if action == 'sell' opvalue - _get_payoff(option_type, s, x) elsif action == 'buy' _get_payoff(option_type, s, x) - opvalue else raise ArgumentError, "Action must be either 'sell' or 'buy'!" end end |
._get_pl_stock(s0, action, s) ⇒ Numo::DFloat (private)
Calculate P/L of a stock position
242 243 244 245 246 247 248 249 250 |
# File 'lib/option_lab/support.rb', line 242 def _get_pl_stock(s0, action, s) if action == 'sell' s0 - s elsif action == 'buy' s - s0 else raise ArgumentError, "Action must be either 'sell' or 'buy'!" end end |
._get_pop_array(inputs, target) ⇒ Array<Float, Float, Float, Float> (private)
Calculate PoP using array of terminal prices
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# File 'lib/option_lab/support.rb', line 312 def _get_pop_array(inputs, target) if inputs.array.size == 0 raise ArgumentError, "The array is empty!" end # Split array by target above_target = inputs.array[inputs.array >= target] below_target = inputs.array[inputs.array < target] # Calculate probabilities probability_of_reaching_target = above_target.size.to_f / inputs.array.size probability_of_missing_target = 1.0 - probability_of_reaching_target # Calculate expected returns expected_return_above_target = above_target.size > 0 ? above_target.mean.round(2) : nil expected_return_below_target = below_target.size > 0 ? below_target.mean.round(2) : nil [ probability_of_reaching_target, expected_return_above_target, probability_of_missing_target, expected_return_below_target ] end |
._get_pop_bs(s, profit, inputs, profit_range) ⇒ Array<Float, Float, Float, Float> (private)
Calculate PoP using Black-Scholes model
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# File 'lib/option_lab/support.rb', line 258 def _get_pop_bs(s, profit, inputs, profit_range) # Initialize variables expected_return_above_target = nil expected_return_below_target = nil probability_of_reaching_target = 0.0 probability_of_missing_target = 0.0 # Calculate sigma sigma = inputs.volatility > 0.0 ? inputs.volatility * Math.sqrt(inputs.years_to_target_date) : 1e-10 # Calculate PoP for each range profit_range.each_with_index do |t, i| prob = 0.0 if t != [[0.0, 0.0]] t.each do |p_range| # Calculate log values lval = p_range[0] > 0.0 ? Math.log(p_range[0]) : -Float::INFINITY hval = Math.log(p_range[1]) # Calculate drift and mean drift = ( inputs.interest_rate - inputs.dividend_yield - 0.5 * inputs.volatility * inputs.volatility ) * inputs.years_to_target_date m = Math.log(inputs.stock_price) + drift # Calculate probability prob += Distribution::Normal.cdf((hval - m) / sigma) - Distribution::Normal.cdf((lval - m) / sigma) end end if i == 0 probability_of_reaching_target = prob else probability_of_missing_target = prob end end [ probability_of_reaching_target, expected_return_above_target, probability_of_missing_target, expected_return_below_target ] end |
._get_profit_range(s, profit, target = 0.01) ⇒ Array<Array<Array<Float>>> (private)
Find profit/loss ranges
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# File 'lib/option_lab/support.rb', line 342 def _get_profit_range(s, profit, target = 0.01) profit_range = [] loss_range = [] # Find where profit crosses target crossings = _get_sign_changes(profit, target) n_crossings = crossings.size # Handle case with no crossings if n_crossings == 0 if profit[0] >= target return [[[0.0, Float::INFINITY]], [[0.0, 0.0]]] else return [[[0.0, 0.0]], [[0.0, Float::INFINITY]]] end end # Find profit and loss ranges lb_profit = hb_profit = nil lb_loss = hb_loss = nil crossings.each_with_index do |index, i| if i == 0 if profit[index] < profit[index - 1] lb_profit = 0.0 hb_profit = s[index - 1] lb_loss = s[index] hb_loss = Float::INFINITY if n_crossings == 1 else lb_profit = s[index] lb_loss = 0.0 hb_loss = s[index - 1] hb_profit = Float::INFINITY if n_crossings == 1 end elsif i == n_crossings - 1 if profit[index] > profit[index - 1] lb_profit = s[index] hb_profit = Float::INFINITY hb_loss = s[index - 1] else hb_profit = s[index - 1] lb_loss = s[index] hb_loss = Float::INFINITY end else if profit[index] > profit[index - 1] lb_profit = s[index] hb_loss = s[index - 1] else hb_profit = s[index - 1] lb_loss = s[index] end end if lb_profit && hb_profit profit_range << [lb_profit, hb_profit] lb_profit = hb_profit = nil end if lb_loss && hb_loss loss_range << [lb_loss, hb_loss] lb_loss = hb_loss = nil end end [profit_range, loss_range] end |
._get_sign_changes(profit, target) ⇒ Array<Integer> (private)
Find indices where profit crosses target
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# File 'lib/option_lab/support.rb', line 416 def _get_sign_changes(profit, target) # Subtract target and add small epsilon p_temp = profit - target + 1e-10 # Get signs (convert to array first since Numo::DFloat doesn't have collect) signs_1 = p_temp[0...-1].to_a.map { |v| v > 0 ? 1 : -1 } signs_2 = p_temp[1..-1].to_a.map { |v| v > 0 ? 1 : -1 } # Find sign changes changes = [] signs_1.each_with_index do |s1, i| changes << i + 1 if s1 * signs_2[i] < 0 end changes end |
.create_price_array(inputs_data, n: 100_000, seed: nil) ⇒ Numo::DFloat
Create price array for simulations
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'lib/option_lab/support.rb', line 169 def create_price_array(inputs_data, n: 100_000, seed: nil) # Set random seed if provided Kernel.srand(seed) if seed # Convert hash to appropriate model if needed inputs = if inputs_data.is_a?(Hash) if %w[black-scholes normal].include?(inputs_data[:model] || inputs_data['model']) Models::BlackScholesModelInputs.new(inputs_data) elsif (inputs_data[:model] || inputs_data['model']) == 'laplace' Models::LaplaceInputs.new(inputs_data) else raise ArgumentError, "Invalid model type!" end else inputs_data end # Generate array based on model arr = if inputs.is_a?(Models::BlackScholesModelInputs) _get_array_price_from_BS(inputs, n) elsif inputs.is_a?(Models::LaplaceInputs) _get_array_price_from_laplace(inputs, n) else raise ArgumentError, "Invalid inputs type!" end # Reset random seed Kernel.srand if seed arr end |
.create_price_seq(min_price, max_price) ⇒ Numo::DFloat
Generate a sequence of stock prices from min to max with $0.01 increment
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# File 'lib/option_lab/support.rb', line 100 def create_price_seq(min_price, max_price) cache_key = "#{min_price}-#{max_price}" # Return cached result if available return @price_seq_cache[cache_key] if @price_seq_cache.key?(cache_key) if max_price > min_price # Create array with increment 0.01 steps = ((max_price - min_price) * 100 + 1).to_i arr = Numo::DFloat.new(steps).seq(min_price, 0.01) # Round to 2 decimal places (Numo::DFloat doesn't support arguments to round) arr = arr.round # Cache the result @price_seq_cache[cache_key] = arr arr else raise ArgumentError, "Maximum price cannot be less than minimum price!" end end |
.get_pl_profile(option_type, action, x, val, n, s, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of an options trade at expiration
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# File 'lib/option_lab/support.rb', line 21 def get_pl_profile(option_type, action, x, val, n, s, commission = 0.0) if action == 'buy' cost = -val elsif action == 'sell' cost = val else raise ArgumentError, "Action must be either 'buy' or 'sell'!" end if Models::OPTION_TYPES.include?(option_type) [ n * _get_pl_option(option_type, val, action, s, x) - commission, n * cost - commission ] else raise ArgumentError, "Option type must be either 'call' or 'put'!" end end |
.get_pl_profile_bs(option_type, action, x, val, r, target_to_maturity_years, volatility, n, s, y = 0.0, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of an options trade before expiration using Black-Scholes
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# File 'lib/option_lab/support.rb', line 75 def get_pl_profile_bs(option_type, action, x, val, r, target_to_maturity_years, volatility, n, s, y = 0.0, commission = 0.0) if action == 'buy' cost = -val factor = 1 elsif action == 'sell' cost = val factor = -1 else raise ArgumentError, "Action must be either 'buy' or 'sell'!" end # Calculate prices using Black-Scholes d1 = BlackScholes.get_d1(s, x, r, volatility, target_to_maturity_years, y) d2 = BlackScholes.get_d2(s, x, r, volatility, target_to_maturity_years, y) calc_price = BlackScholes.get_option_price(option_type, s, x, r, target_to_maturity_years, d1, d2, y) profile = factor * n * (calc_price - val) - commission [profile, n * cost - commission] end |
.get_pl_profile_stock(s0, action, n, s, commission = 0.0) ⇒ Array<Numo::DFloat, Float>
Get profit/loss profile and cost of a stock position
47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/option_lab/support.rb', line 47 def get_pl_profile_stock(s0, action, n, s, commission = 0.0) if action == 'buy' cost = -s0 elsif action == 'sell' cost = s0 else raise ArgumentError, "Action must be either 'buy' or 'sell'!" end [ n * _get_pl_stock(s0, action, s) - commission, n * cost - commission ] end |
.get_pop(s, profit, inputs_data, target = 0.01) ⇒ Models::PoPOutputs
Estimate probability of profit
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# File 'lib/option_lab/support.rb', line 129 def get_pop(s, profit, inputs_data, target = 0.01) # Initialize variables probability_of_reaching_target = 0.0 probability_of_missing_target = 0.0 expected_return_above_target = nil expected_return_below_target = nil # Get profit ranges t_ranges = _get_profit_range(s, profit, target) reaching_target_range = t_ranges[0] == [[0.0, 0.0]] ? [] : t_ranges[0] missing_target_range = t_ranges[1] == [[0.0, 0.0]] ? [] : t_ranges[1] # Calculate PoP based on inputs model if inputs_data.is_a?(Models::BlackScholesModelInputs) probability_of_reaching_target, expected_return_above_target, probability_of_missing_target, expected_return_below_target = _get_pop_bs(s, profit, inputs_data, t_ranges) elsif inputs_data.is_a?(Models::ArrayInputs) probability_of_reaching_target, expected_return_above_target, probability_of_missing_target, expected_return_below_target = _get_pop_array(inputs_data, target) end # Return outputs Models::PoPOutputs.new( probability_of_reaching_target: probability_of_reaching_target, probability_of_missing_target: probability_of_missing_target, reaching_target_range: reaching_target_range, missing_target_range: missing_target_range, expected_return_above_target: expected_return_above_target, expected_return_below_target: expected_return_below_target ) end |