Module: OptionLab::Engine
- Defined in:
- lib/option_lab/engine.rb
Class Method Summary collapse
-
._generate_outputs(data) ⇒ Models::Outputs
Generate outputs from engine data.
-
._init_inputs(inputs) ⇒ Models::EngineData
Initialize input data.
-
._run(data) ⇒ Models::EngineData
Run calculations.
-
._run_closed_position_calcs(data, i) ⇒ Models::EngineData
Run closed position calculations.
-
._run_option_calcs(data, i) ⇒ Models::EngineData
Run option calculations.
-
._run_stock_calcs(data, i) ⇒ Models::EngineData
Run stock calculations.
-
.run_strategy(inputs_data) ⇒ Models::Outputs
Run strategy calculation.
Class Method Details
._generate_outputs(data) ⇒ Models::Outputs
Generate outputs from engine data
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# File 'lib/option_lab/engine.rb', line 464 def _generate_outputs(data) Models::Outputs.new( inputs: data.inputs, data: data, probability_of_profit: data.profit_probability, expected_profit: data.expected_profit, expected_loss: data.expected_loss, strategy_cost: data.cost.sum, per_leg_cost: data.cost, profit_ranges: data.profit_ranges, minimum_return_in_the_domain: data.strategy_profit.min, maximum_return_in_the_domain: data.strategy_profit.max, implied_volatility: data.implied_volatility, in_the_money_probability: data.itm_probability, delta: data.delta, gamma: data.gamma, theta: data.theta, vega: data.vega, rho: data.rho, probability_of_profit_target: data.profit_target_probability, probability_of_loss_limit: data.loss_limit_probability, profit_target_ranges: data.profit_target_ranges, loss_limit_ranges: data.loss_limit_ranges, ) end |
._init_inputs(inputs) ⇒ Models::EngineData
Initialize input data
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# File 'lib/option_lab/engine.rb', line 52 def _init_inputs(inputs) # Create engine data data = Models::EngineData.new( stock_price_array: Support.create_price_seq(inputs.min_stock, inputs.max_stock), terminal_stock_prices: inputs.model == 'array' ? inputs.array : Models.init_empty_array, inputs: inputs, ) # Set days in year data.days_in_year = inputs.discard_nonbusiness_days ? inputs.business_days_in_year : 365 # Calculate days to target if inputs.start_date && inputs.target_date n_discarded_days = if inputs.discard_nonbusiness_days Utils.get_nonbusiness_days( inputs.start_date, inputs.target_date, inputs.country ) else 0 end data.days_to_target = (inputs.target_date - inputs.start_date).to_i + 1 - n_discarded_days else data.days_to_target = inputs.days_to_target_date end # Process each strategy leg inputs.strategy.each_with_index do |strategy, _i| data.type << strategy.type case strategy when Models::Option data.strike << strategy.strike data.premium << strategy.premium data.n << strategy.n data.action << strategy.action data.previous_position << strategy.prev_pos || 0.0 if !strategy.expiration data.days_to_maturity << data.days_to_target data.use_bs << false elsif strategy.expiration.is_a?(Date) && inputs.start_date n_discarded_days = if inputs.discard_nonbusiness_days Utils.get_nonbusiness_days( inputs.start_date, strategy.expiration, inputs.country ) else 0 end data.days_to_maturity << (strategy.expiration - inputs.start_date).to_i + 1 - n_discarded_days data.use_bs << (strategy.expiration != inputs.target_date) elsif strategy.expiration.is_a?(Integer) if strategy.expiration >= data.days_to_target data.days_to_maturity << strategy.expiration data.use_bs << (strategy.expiration != data.days_to_target) else raise ArgumentError, 'Days remaining to maturity must be greater than or equal to the number of days remaining to the target date!' end else raise ArgumentError, 'Expiration must be a date, an int, or nil.' end when Models::Stock data.n << strategy.n data.action << strategy.action data.previous_position << strategy.prev_pos || 0.0 data.strike << 0.0 data.premium << 0.0 data.use_bs << false data.days_to_maturity << -1 when Models::ClosedPosition data.previous_position << strategy.prev_pos data.strike << 0.0 data.n << 0 data.premium << 0.0 data.action << 'n/a' data.use_bs << false data.days_to_maturity << -1 else raise ArgumentError, "Type must be 'call', 'put', 'stock' or 'closed'!" end end data end |
._run(data) ⇒ Models::EngineData
Run calculations
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# File 'lib/option_lab/engine.rb', line 144 def _run(data) inputs = data.inputs # Calculate time to target time_to_target = data.days_to_target.to_f / data.days_in_year # Initialize arrays data.cost = Array.new(data.type.size, 0.0) data.profit = Numo::DFloat.zeros(data.type.size, data.stock_price_array.size) data.strategy_profit = Numo::DFloat.zeros(data.stock_price_array.size) if inputs.model == 'array' data.profit_mc = Numo::DFloat.zeros(data.type.size, data.terminal_stock_prices.size) data.strategy_profit_mc = Numo::DFloat.zeros(data.terminal_stock_prices.size) end # Process each strategy leg data.type.each_with_index do |type, i| case type when 'call', 'put' _run_option_calcs(data, i) when 'stock' _run_stock_calcs(data, i) when 'closed' _run_closed_position_calcs(data, i) end # Add to strategy profit data.strategy_profit += data.profit[i, true] if inputs.model == 'array' data.strategy_profit_mc += data.profit_mc[i, true] end end # Calculate probability of profit pop_inputs = if inputs.model == 'array' Models::ArrayInputs.new( array: data.strategy_profit_mc, ) else Models::BlackScholesModelInputs.new( stock_price: inputs.stock_price, volatility: inputs.volatility, years_to_target_date: time_to_target, interest_rate: inputs.interest_rate, dividend_yield: inputs.dividend_yield, ) end pop_out = Support.get_pop(data.stock_price_array, data.strategy_profit, pop_inputs) # Store results data.profit_probability = pop_out.probability_of_reaching_target data.expected_profit = pop_out.expected_return_above_target data.expected_loss = pop_out.expected_return_below_target data.profit_ranges = pop_out.reaching_target_range # Calculate profit target probability if needed if inputs.profit_target && inputs.profit_target > 0.01 pop_out_prof_targ = Support.get_pop( data.stock_price_array, data.strategy_profit, pop_inputs, inputs.profit_target, ) data.profit_target_probability = pop_out_prof_targ.probability_of_reaching_target data.profit_target_ranges = pop_out_prof_targ.reaching_target_range end # Calculate loss limit probability if needed if inputs.loss_limit && inputs.loss_limit < 0.0 pop_out_loss_lim = Support.get_pop( data.stock_price_array, data.strategy_profit, pop_inputs, inputs.loss_limit + 0.01, ) data.loss_limit_probability = pop_out_loss_lim.probability_of_missing_target data.loss_limit_ranges = pop_out_loss_lim.missing_target_range end data end |
._run_closed_position_calcs(data, i) ⇒ Models::EngineData
Run closed position calculations
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# File 'lib/option_lab/engine.rb', line 440 def _run_closed_position_calcs(data, i) # Set metrics data.implied_volatility << 0.0 data.itm_probability << 0.0 data.delta << 0.0 data.gamma << 0.0 data.vega << 0.0 data.rho << 0.0 data.theta << 0.0 # Set cost and profit data.cost[i] = data.previous_position[i] data.profit[i, true] += data.previous_position[i] if data.inputs.model == 'array' data.profit_mc[i, true] += data.previous_position[i] end data end |
._run_option_calcs(data, i) ⇒ Models::EngineData
Run option calculations
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# File 'lib/option_lab/engine.rb', line 235 def _run_option_calcs(data, i) inputs = data.inputs action = data.action[i] type = data.type[i] if data.previous_position[i] && data.previous_position[i] < 0.0 # Previous position is closed data.implied_volatility << 0.0 data.itm_probability << 0.0 data.delta << 0.0 data.gamma << 0.0 data.vega << 0.0 data.theta << 0.0 data.rho << 0.0 cost = (data.premium[i] + data.previous_position[i]) * data.n[i] cost *= -1.0 if data.action[i] == 'buy' data.cost[i] = cost data.profit[i, true] += cost if inputs.model == 'array' data.profit_mc[i, true] += cost end return data end # Calculate option metrics time_to_maturity = data.days_to_maturity[i].to_f / data.days_in_year bs = BlackScholes.get_bs_info( inputs.stock_price, data.strike[i], inputs.interest_rate, inputs.volatility, time_to_maturity, inputs.dividend_yield, ) # Store Greeks data.gamma << bs.gamma data.vega << bs.vega data.implied_volatility << BlackScholes.get_implied_vol( type, data.premium[i], inputs.stock_price, data.strike[i], inputs.interest_rate, time_to_maturity, inputs.dividend_yield, ) # Set multiplier for buy/sell negative_multiplier = data.action[i] == 'buy' ? 1 : -1 # Store type-specific metrics if type == 'call' data.itm_probability << bs.call_itm_prob data.delta << bs.call_delta * negative_multiplier data.theta << bs.call_theta / data.days_in_year * negative_multiplier data.rho << bs.call_rho * negative_multiplier else data.itm_probability << bs.put_itm_prob data.delta << bs.put_delta * negative_multiplier data.theta << bs.put_theta / data.days_in_year * negative_multiplier data.rho << bs.put_rho * negative_multiplier end # Use previous position premium if available opt_value = (data.previous_position[i] && data.previous_position[i] > 0.0) ? data.previous_position[i] : data.premium[i] # Calculate profit/loss profile if data.use_bs[i] target_to_maturity = (data.days_to_maturity[i] - data.days_to_target).to_f / data.days_in_year profit, cost = Support.get_pl_profile_bs( type, action, data.strike[i], opt_value, inputs.interest_rate, target_to_maturity, inputs.volatility, data.n[i], data.stock_price_array, inputs.dividend_yield, inputs.opt_commission, ) data.profit[i, true] = profit data.cost[i] = cost if inputs.model == 'array' data.profit_mc[i, true] = Support.get_pl_profile_bs( type, action, data.strike[i], opt_value, inputs.interest_rate, target_to_maturity, inputs.volatility, data.n[i], data.terminal_stock_prices, inputs.dividend_yield, inputs.opt_commission, )[0] end else profit, cost = Support.get_pl_profile( type, action, data.strike[i], opt_value, data.n[i], data.stock_price_array, inputs.opt_commission, ) data.profit[i, true] = profit data.cost[i] = cost if inputs.model == 'array' data.profit_mc[i, true] = Support.get_pl_profile( type, action, data.strike[i], opt_value, data.n[i], data.terminal_stock_prices, inputs.opt_commission, )[0] end end data end |
._run_stock_calcs(data, i) ⇒ Models::EngineData
Run stock calculations
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
# File 'lib/option_lab/engine.rb', line 378 def _run_stock_calcs(data, i) inputs = data.inputs action = data.action[i] # Set delta based on action data.delta << (action == 'buy' ? 1.0 : -1.0) # Set other metrics data.itm_probability << 1.0 data.implied_volatility << 0.0 data.gamma << 0.0 data.vega << 0.0 data.rho << 0.0 data.theta << 0.0 if data.previous_position[i] && data.previous_position[i] < 0.0 # Previous position is closed costtmp = (inputs.stock_price + data.previous_position[i]) * data.n[i] costtmp *= -1.0 if data.action[i] == 'buy' data.cost[i] = costtmp data.profit[i, true] += costtmp if inputs.model == 'array' data.profit_mc[i, true] += costtmp end return data end # Use previous position if available stockpos = (data.previous_position[i] && data.previous_position[i] > 0.0) ? data.previous_position[i] : inputs.stock_price # Calculate profit/loss profile profit, cost = Support.get_pl_profile_stock( stockpos, action, data.n[i], data.stock_price_array, inputs.stock_commission, ) data.profit[i, true] = profit data.cost[i] = cost if inputs.model == 'array' data.profit_mc[i, true] = Support.get_pl_profile_stock( stockpos, action, data.n[i], data.terminal_stock_prices, inputs.stock_commission, )[0] end data end |
.run_strategy(inputs_data) ⇒ Models::Outputs
Run strategy calculation
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# File 'lib/option_lab/engine.rb', line 13 def run_strategy(inputs_data) # Ensure inputs_data is not nil inputs_data ||= {} # Ensure strategy is present if inputs_data.is_a?(Hash) && !inputs_data[:strategy] # Create a default call option inputs_data[:strategy] = [ { type: 'call', strike: 110.0, premium: 5.0, n: 1, action: 'buy', expiration: Date.today + 30 } ] end # Convert hash to Inputs if needed inputs = if inputs_data.is_a?(Models::Inputs) inputs_data else Models::Inputs.new(inputs_data) end # Initialize data data = _init_inputs(inputs) # Run calculations data = _run(data) # Generate outputs _generate_outputs(data) end |