Class: OPL::Sudoku
- Inherits:
-
Object
- Object
- OPL::Sudoku
- Defined in:
- lib/sudoku.rb
Instance Attribute Summary collapse
-
#input_matrix ⇒ Object
Returns the value of attribute input_matrix.
-
#lp ⇒ Object
Returns the value of attribute lp.
-
#solution ⇒ Object
Returns the value of attribute solution.
Instance Method Summary collapse
- #format_solution ⇒ Object
-
#initialize(input_matrix) ⇒ Sudoku
constructor
A new instance of Sudoku.
- #print_problem ⇒ Object
- #print_solution ⇒ Object
- #solve ⇒ Object
Constructor Details
#initialize(input_matrix) ⇒ Sudoku
Returns a new instance of Sudoku.
7 8 9 10 |
# File 'lib/sudoku.rb', line 7 def initialize(input_matrix) @input_matrix = input_matrix "" end |
Instance Attribute Details
#input_matrix ⇒ Object
Returns the value of attribute input_matrix.
3 4 5 |
# File 'lib/sudoku.rb', line 3 def input_matrix @input_matrix end |
#lp ⇒ Object
Returns the value of attribute lp.
4 5 6 |
# File 'lib/sudoku.rb', line 4 def lp @lp end |
#solution ⇒ Object
Returns the value of attribute solution.
5 6 7 |
# File 'lib/sudoku.rb', line 5 def solution @solution end |
Instance Method Details
#format_solution ⇒ Object
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# File 'lib/sudoku.rb', line 40 def format_solution @lp.matrix_solution["x"] mat = @lp.matrix_solution["x"] sol = Array.new(mat[0][0].size) { Array.new(mat[0][0].size, 0) } mat.each_index do |i| mat[i].each_index do |j| mat[i][j].each_index do |k| if mat[i][j][k].to_f == 1.0 sol[i][j] = k+1 end end end end @solution = sol "" end |
#print_problem ⇒ Object
57 58 59 60 61 62 |
# File 'lib/sudoku.rb', line 57 def print_problem @input_matrix.each do |row| puts row.join(" ") end "" end |
#print_solution ⇒ Object
64 65 66 67 68 69 |
# File 'lib/sudoku.rb', line 64 def print_solution @solution.each do |row| puts row.join(" ") end "" end |
#solve ⇒ Object
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# File 'lib/sudoku.rb', line 12 def solve size = input_matrix.count rubysize = size-1 constant_constraints = [] input_matrix.each_index do |i| row = input_matrix[i] row.each_index do |j| element = input_matrix[i][j] if element != 0 constant_constraints << "x[#{i}][#{j}][#{element-1}] = 1" end end end @lp = minimize("y", subject_to([ "y = 2",# y is a dummy variable so I don't have to worry about the objective function "forall(i in (0..#{rubysize}), j in (0..#{rubysize}), sum(k in (0..#{rubysize}), x[i][j][k]) = 1)",# an element contains only one number "forall(i in (0..#{rubysize}), k in (0..#{rubysize}), sum(j in (0..#{rubysize}), x[i][j][k]) = 1)",# every row contains every number "forall(j in (0..#{rubysize}), k in (0..#{rubysize}), sum(i in (0..#{rubysize}), x[i][j][k]) = 1)",# every column contains every number "forall(u in [0,3,6], v in [0,3,6], k in (0..#{rubysize}), sum(i in ((0+u)..(#{(size/3)-1}+u)), j in ((0+v)..(#{(size/3)-1}+v)), x[i][j][k]) = 1)",# every 3x3 grid contains every number constant_constraints# some elements already have their values set ].flatten,["BOOLEAN: x"])) "" end |