Module: OpenTox::Algorithm::Neighbors
- Defined in:
- lib/utils.rb,
lib/algorithm.rb
Overview
neighbors
Class Method Summary collapse
-
.get_confidence(params) ⇒ Object
Get confidence.
-
.local_svm_classification(params) ⇒ Numeric
Local support vector regression from neighbors.
-
.local_svm_prop(props, acts, min_train_performance) ⇒ Numeric
Local support vector prediction from neighbors.
-
.local_svm_regression(params) ⇒ Numeric
Local support vector regression from neighbors.
-
.weighted_majority_vote(params) ⇒ Numeric
Classification with majority vote from neighbors weighted by similarity.
Class Method Details
.get_confidence(params) ⇒ Object
241 242 243 244 245 246 |
# File 'lib/utils.rb', line 241 def self.get_confidence(params) conf = params[:sims].inject{|sum,x| sum + x } confidence = conf/params[:sims].size LOGGER.debug "Confidence is: '" + confidence.to_s + "'." return confidence end |
.local_svm_classification(params) ⇒ Numeric
Local support vector regression from neighbors
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# File 'lib/algorithm.rb', line 334 def self.local_svm_classification(params) begin confidence = 0.0 prediction = nil LOGGER.debug "Local SVM." if params[:acts].size>0 if params[:props] n_prop = params[:props][0].collect q_prop = params[:props][1].collect props = [ n_prop, q_prop ] end acts = params[:acts].collect acts = acts.collect{|v| "Val" + v.to_s} # Convert to string for R to recognize classification prediction = local_svm_prop( props, acts, params[:min_train_performance]) # params[:props].nil? signals non-prop setting prediction = prediction.sub(/Val/,"") if prediction # Convert back to Float confidence = 0.0 if prediction.nil? LOGGER.debug "Prediction is: '" + prediction.to_s + "'." confidence = get_confidence({:sims => params[:sims][1], :acts => params[:acts]}) end {:prediction => prediction, :confidence => confidence} rescue Exception => e LOGGER.debug "#{e.class}: #{e.}" LOGGER.debug "Backtrace:\n\t#{e.backtrace.join("\n\t")}" end end |
.local_svm_prop(props, acts, min_train_performance) ⇒ Numeric
Local support vector prediction from neighbors. Uses propositionalized setting. Not to be called directly (use local_svm_regression or local_svm_classification).
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# File 'lib/algorithm.rb', line 372 def self.local_svm_prop(props, acts, min_train_performance) LOGGER.debug "Local SVM (Propositionalization / Kernlab Kernel)." n_prop = props[0] # is a matrix, i.e. two nested Arrays. q_prop = props[1] # is an Array. prediction = nil if Algorithm::zero_variance? acts prediction = acts[0] else #LOGGER.debug gram_matrix.to_yaml @r = RinRuby.new(false,false) # global R instance leads to Socket errors after a large number of requests @r.eval "set.seed(1)" @r.eval "suppressPackageStartupMessages(library('caret'))" # requires R packages "caret" and "kernlab" @r.eval "suppressPackageStartupMessages(library('doMC'))" # requires R packages "multicore" @r.eval "registerDoMC()" # switch on parallel processing begin # set data LOGGER.debug "Setting R data ..." @r.n_prop = n_prop.flatten @r.n_prop_x_size = n_prop.size @r.n_prop_y_size = n_prop[0].size @r.y = acts @r.q_prop = q_prop #@r.eval "y = matrix(y)" @r.eval "prop_matrix = matrix(n_prop, n_prop_x_size, n_prop_y_size, byrow=T)" @r.eval "q_prop = matrix(q_prop, 1, n_prop_y_size, byrow=T)" # prepare data LOGGER.debug "Preparing R data ..." @r.eval "if (class(y) == 'character') { y = factor(y); suppressPackageStartupMessages(library('class')) }" # For classification @r.eval <<-EOR rem = nearZeroVar(prop_matrix) if (length(rem) > 0) { prop_matrix = prop_matrix[,-rem,drop=F] q_prop = q_prop[,-rem,drop=F] } rem = findCorrelation(cor(prop_matrix)) if (length(rem) > 0) { prop_matrix = prop_matrix[,-rem,drop=F] q_prop = q_prop[,-rem,drop=F] } EOR # model + support vectors LOGGER.debug "Creating R SVM model ..." @r.eval <<-EOR model = train(prop_matrix,y,method="svmradial",tuneLength=8,trControl=trainControl(method="LGOCV",number=10),preProcess=c("center", "scale")) perf = ifelse ( class(y)!='numeric', max(model$results$Accuracy), model$results[which.min(model$results$RMSE),]$Rsquared ) EOR # prediction LOGGER.debug "Predicting ..." @r.eval "p = predict(model,q_prop)" @r.eval "if (class(y)!='numeric') p = as.character(p)" prediction = @r.p # censoring prediction = nil if ( @r.perf.nan? || @r.perf < min_train_performance ) LOGGER.debug "Performance: #{sprintf("%.2f", @r.perf)}" rescue Exception => e LOGGER.debug "#{e.class}: #{e.}" LOGGER.debug "Backtrace:\n\t#{e.backtrace.join("\n\t")}" end @r.quit # free R end prediction end |
.local_svm_regression(params) ⇒ Numeric
Local support vector regression from neighbors
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# File 'lib/algorithm.rb', line 302 def self.local_svm_regression(params) begin confidence = 0.0 prediction = nil LOGGER.debug "Local SVM." if params[:acts].size>0 if params[:props] n_prop = params[:props][0].collect q_prop = params[:props][1].collect props = [ n_prop, q_prop ] end acts = params[:acts].collect prediction = local_svm_prop( props, acts, params[:min_train_performance]) # params[:props].nil? signals non-prop setting prediction = nil if (!prediction.nil? && prediction.infinite?) LOGGER.debug "Prediction is: '" + prediction.to_s + "'." confidence = get_confidence({:sims => params[:sims][1], :acts => params[:acts]}) confidence = 0.0 if prediction.nil? end {:prediction => prediction, :confidence => confidence} rescue Exception => e LOGGER.debug "#{e.class}: #{e.}" LOGGER.debug "Backtrace:\n\t#{e.backtrace.join("\n\t")}" end end |
.weighted_majority_vote(params) ⇒ Numeric
Classification with majority vote from neighbors weighted by similarity
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/algorithm.rb', line 258 def self.weighted_majority_vote(params) neighbor_contribution = 0.0 confidence_sum = 0.0 confidence = 0.0 prediction = nil LOGGER.debug "Weighted Majority Vote Classification." params[:acts].each_index do |idx| neighbor_weight = params[:sims][1][idx] neighbor_contribution += params[:acts][idx] * neighbor_weight if params[:value_map].size == 2 # AM: provide compat to binary classification: 1=>false 2=>true case params[:acts][idx] when 1 confidence_sum -= neighbor_weight when 2 confidence_sum += neighbor_weight end else confidence_sum += neighbor_weight end end if params[:value_map].size == 2 if confidence_sum >= 0.0 prediction = 2 unless params[:acts].size==0 elsif confidence_sum < 0.0 prediction = 1 unless params[:acts].size==0 end else prediction = (neighbor_contribution/confidence_sum).round unless params[:acts].size==0 # AM: new multinomial prediction end LOGGER.debug "Prediction is: '" + prediction.to_s + "'." unless prediction.nil? confidence = (confidence_sum/params[:acts].size).abs if params[:acts].size > 0 LOGGER.debug "Confidence is: '" + confidence.to_s + "'." unless prediction.nil? return {:prediction => prediction, :confidence => confidence.abs} end |