Module: OpenTox::Algorithm::FeatureSelection
- Includes:
- OpenTox::Algorithm
- Defined in:
- lib/algorithm.rb
Instance Attribute Summary
Attributes included from OpenTox
Class Method Summary collapse
-
.rfe(params) ⇒ String
Recursive Feature Elimination using caret.
Methods included from OpenTox::Algorithm
effect, gauss, get_pc_descriptors, isnull_or_singular?, load_ds_csv, min_frequency, numeric?, pc_descriptors, #run, sum_size, #to_rdfxml, zero_variance?
Methods included from OpenTox
#add_metadata, all, #delete, #initialize, #load_metadata, sign_in, text_to_html, #to_rdfxml
Class Method Details
.rfe(params) ⇒ String
Recursive Feature Elimination using caret
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# File 'lib/algorithm.rb', line 451 def self.rfe(params) @r=RinRuby.new(false,false) @r.ds_csv_file = params[:ds_csv_file].to_s @r.prediction_feature = params[:prediction_feature].to_s @r.fds_csv_file = params[:fds_csv_file].to_s @r.del_missing = params[:del_missing] == true ? 1 : 0 r_result_file = params[:fds_csv_file].sub("rfe_", "rfe_R_") @r.f_fds_r = r_result_file.to_s # need packs 'randomForest', 'RANN' @r.eval " set.seed(1)\n suppressPackageStartupMessages(library('caret'))\n suppressPackageStartupMessages(library('randomForest'))\n suppressPackageStartupMessages(library('RANN'))\n suppressPackageStartupMessages(library('doMC'))\n registerDoMC()\n \n acts = read.csv(ds_csv_file, check.names=F)\n feats = read.csv(fds_csv_file, check.names=F)\n ds = merge(acts, feats, by=\"SMILES\") # duplicates features for duplicate SMILES :-)\n \n features = ds[,(dim(acts)[2]+1):(dim(ds)[2])]\n y = ds[,which(names(ds) == prediction_feature)] \n \n # assumes a data matrix 'features' and a vector 'y' of target values\n row.names(features)=NULL\n \n pp = NULL\n if (del_missing) {\n # needed if rows should be removed\n na_ids = apply(features,1,function(x)any(is.na(x)))\n features = features[!na_ids,]\n y = y[!na_ids]\n pp = preProcess(features, method=c(\"scale\", \"center\"))\n } else {\n # Use imputation if NA's random (only then!)\n pp = preProcess(features, method=c(\"scale\", \"center\", \"knnImpute\"))\n }\n features = predict(pp, features)\n \n # determine subsets\n subsets = dim(features)[2]*c(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)\n subsets = c(2,3,4,5,7,10,subsets)\n subsets = unique(sort(round(subsets))) \n subsets = subsets[subsets<=dim(features)[2]]\n subsets = subsets[subsets>1] \n \n # Recursive feature elimination\n rfProfile = rfe( x=features, y=y, rfeControl=rfeControl(functions=rfFuncs, number=50), sizes=subsets)\n \n # read existing dataset and select most useful features\n csv=feats[,c(\"SMILES\", rfProfile$optVariables)]\n write.csv(x=csv,file=f_fds_r, row.names=F, quote=F, na='')\n EOR\n r_result_file\nend\n" |