Class: OpenStudio::Model::Space

Inherits:
Object
  • Object
show all
Defined in:
lib/openstudio-standards/standards/Standards.Space.rb

Overview

open the class to add methods to apply HVAC efficiency standards

Instance Method Summary collapse

Instance Method Details

#add_daylighting_controls(template, remove_existing_controls, draw_daylight_areas_for_debugging = false) ⇒ Hash

TODO:

add a list of valid choices for template argument

TODO:

add exception for retail spaces

TODO:

add exception 2 for skylights with VT < 0.4

TODO:

add exception 3 for CZ 8 where lighting < 200W

TODO:

stop skipping non-vertical walls

TODO:

stop skipping non-horizontal roofs

TODO:

Determine the illuminance setpoint for the controls based on space type

TODO:

rotate sensor to face window (only needed for glare calcs)

Note:

This method is super complicated because of all the polygon/geometry math required. and therefore may not return perfect results. However, it works well in most tested situations. When it fails, it will log warnings/errors for users to see.

Adds daylighting controls (sidelighting and toplighting) per the template

Parameters:

  • template (String)

    template to use. valid choices:

  • remove_existing_controls (Bool)

    if true, will remove existing controls then add new ones

  • draw_daylight_areas_for_debugging (Bool) (defaults to: false)

    If this argument is set to true, daylight areas will be added to the model as surfaces for visual debugging. Yellow = toplighted area, Red = primary sidelighted area, Blue = secondary sidelighted area, Light Blue = floor

Returns:

  • (Hash)

    returns a hash of resulting areas (m^2). Hash keys are: ‘toplighted_area’, ‘primary_sidelighted_area’, ‘secondary_sidelighted_area’, ‘total_window_area’, ‘total_skylight_area’



783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 783

def add_daylighting_controls(template, remove_existing_controls, draw_daylight_areas_for_debugging = false)
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "******For #{name}, adding daylight controls.")

  # Check for existing daylighting controls
  # and remove if specified in the input
  existing_daylighting_controls = daylightingControls
  unless existing_daylighting_controls.empty?
    if remove_existing_controls
      existing_daylighting_controls.each(&:remove)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, removed #{existing_daylighting_controls.size} existing daylight controls before adding new controls.")
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, daylight controls were already present, no additional controls added.")
      return false
    end
  end

  # Skip this space if it has no exterior windows or skylights
  ext_fen_area_m2 = 0
  surfaces.each do |surface|
    next unless surface.outsideBoundaryCondition == 'Outdoors'
    surface.subSurfaces.each do |sub_surface|
      next unless sub_surface.subSurfaceType == 'FixedWindow' || sub_surface.subSurfaceType == 'OperableWindow' || sub_surface.subSurfaceType == 'Skylight' || sub_surface.subSurfaceType == 'GlassDoor'
      ext_fen_area_m2 += sub_surface.netArea
    end
  end
  if ext_fen_area_m2.zero?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, daylighting control not applicable because no exterior fenestration is present.")
    return false
  end

  areas = nil

  req_top_ctrl = false
  req_pri_ctrl = false
  req_sec_ctrl = false

  # Get the area of the space
  space_area_m2 = floorArea

  # Get the LPD of the space
  space_lpd_w_per_m2 = lightingPowerPerFloorArea

  # Determine the type of control required
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'

    # Do nothing, no daylighting controls required
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, daylighting control not required by this standard.")
    return false

  when '90.1-2010'

    req_top_ctrl = true
    req_pri_ctrl = true

    areas = daylighted_areas(template, draw_daylight_areas_for_debugging)
    ###################
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "primary_sidelighted_area = #{areas['primary_sidelighted_area']}")
    ###################

    # Sidelighting
    # Check if the primary sidelit area < 250 ft2
    if areas['primary_sidelighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.4.")
      req_pri_ctrl = false
    elsif areas['primary_sidelighted_area'] < OpenStudio.convert(250, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because primary sidelighted area < 250ft2 per 9.4.1.4.")
      req_pri_ctrl = false
    else
      # Check effective sidelighted aperture
      sidelighted_effective_aperture = sidelighting_effective_aperture(areas['primary_sidelighted_area'])
      ###################
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_pri = #{sidelighted_effective_aperture}")
      ###################
      if sidelighted_effective_aperture < 0.1
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because sidelighted effective aperture < 0.1 per 9.4.1.4 Exception b.")
        req_pri_ctrl = false
      end
    end

    ###################
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "toplighted_area = #{areas['toplighted_area']}")
    ###################
    # Toplighting
    # Check if the toplit area < 900 ft2
    if areas['toplighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.5.")
      req_top_ctrl = false
    elsif areas['toplighted_area'] < OpenStudio.convert(900, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, toplighting control not required because toplighted area < 900ft2 per 9.4.1.5.")
      req_top_ctrl = false
    else
      # Check effective sidelighted aperture
      sidelighted_effective_aperture = skylight_effective_aperture(areas['toplighted_area'])
      ###################
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "sidelighted_effective_aperture_top = #{sidelighted_effective_aperture}")
      ###################
      if sidelighted_effective_aperture < 0.006
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, toplighting control not required because skylight effective aperture < 0.006 per 9.4.1.5 Exception b.")
        req_top_ctrl = false
      end
    end

  when '90.1-2013'

    req_top_ctrl = true
    req_pri_ctrl = true
    req_sec_ctrl = true

    areas = daylighted_areas(template, draw_daylight_areas_for_debugging)

    # Primary Sidelighting
    # Check if the primary sidelit area contains less than 150W of lighting
    if areas['primary_sidelighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.1(e).")
      req_pri_ctrl = false
    elsif areas['primary_sidelighted_area'] * space_lpd_w_per_m2 < 150.0
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because less than 150W of lighting are present in the primary daylighted area per 9.4.1.1(e).")
      req_pri_ctrl = false
    else
      # Check the size of the windows
      if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.")
        req_pri_ctrl = false
      end
    end

    # Secondary Sidelighting
    # Check if the primary and secondary sidelit areas contains less than 300W of lighting
    if areas['secondary_sidelighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, secondary sidelighting control not required because secondary sidelighted area = 0ft2 per 9.4.1.1(e).")
      req_sec_ctrl = false
    elsif (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) * space_lpd_w_per_m2 < 300
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, secondary sidelighting control not required because less than 300W of lighting are present in the combined primary and secondary daylighted areas per 9.4.1.1(e).")
      req_sec_ctrl = false
    else
      # Check the size of the windows
      if areas['total_window_area'] < OpenStudio.convert(20.0, 'ft^2', 'm^2').get
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, secondary sidelighting control not required because there are less than 20ft2 of window per 9.4.1.1(e) Exception 2.")
        req_sec_ctrl = false
      end
    end

    # Toplighting
    # Check if the toplit area contains less than 150W of lighting
    if areas['toplighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.1(f).")
      req_top_ctrl = false
    elsif areas['toplighted_area'] * space_lpd_w_per_m2 < 150
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, toplighting control not required because less than 150W of lighting are present in the toplighted area per 9.4.1.1(f).")
      req_top_ctrl = false
    end

  when 'AssetScore'

    # Same as 90.1-2010 but without effective aperture limits
    # to avoid needing to perform run to get VLT for layered windows.

    req_top_ctrl = true
    req_pri_ctrl = true

    areas = daylighted_areas(template, draw_daylight_areas_for_debugging)

    # Sidelighting
    # Check if the primary sidelit area < 250 ft2
    if areas['primary_sidelighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because primary sidelighted area = 0ft2 per 9.4.1.4.")
      req_pri_ctrl = false
    elsif areas['primary_sidelighted_area'] < OpenStudio.convert(250, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, primary sidelighting control not required because primary sidelighted area < 250ft2 per 9.4.1.4.")
      req_pri_ctrl = false
    end

    # Toplighting
    # Check if the toplit area < 900 ft2
    if areas['toplighted_area'] == 0.0
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, toplighting control not required because toplighted area = 0ft2 per 9.4.1.5.")
      req_top_ctrl = false
    elsif areas['toplighted_area'] < OpenStudio.convert(900, 'ft^2', 'm^2').get
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, toplighting control not required because toplighted area < 900ft2 per 9.4.1.5.")
      req_top_ctrl = false
    end

  end # End of template case statement

  # Output the daylight control requirements
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, toplighting control required = #{req_top_ctrl}")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, primary sidelighting control required = #{req_pri_ctrl}")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, secondary sidelighting control required = #{req_sec_ctrl}")

  # Stop here if no lighting controls are required.
  # Do not put daylighting control points into the space.
  if !req_top_ctrl && !req_pri_ctrl && !req_sec_ctrl
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, no daylighting control is required.")
    return false
  end

  # Record a floor in the space for later use
  floor_surface = nil
  surfaces.sort.each do |surface|
    if surface.surfaceType == 'Floor'
      floor_surface = surface
      break
    end
  end

  # Find all exterior windows/skylights in the space and record their azimuths and areas
  windows = {}
  skylights = {}
  surfaces.sort.each do |surface|
    next unless surface.outsideBoundaryCondition == 'Outdoors' && (surface.surfaceType == 'Wall' || surface.surfaceType == 'RoofCeiling')

    # Skip non-vertical walls and non-horizontal roofs
    straight_upward = OpenStudio::Vector3d.new(0, 0, 1)
    surface_normal = surface.outwardNormal
    if surface.surfaceType == 'Wall'
      # TODO: stop skipping non-vertical walls
      unless surface_normal.z.abs < 0.001
        unless surface.subSurfaces.empty?
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "Cannot currently handle non-vertical walls; skipping windows on #{surface.name} in #{name} for daylight sensor positioning.")
          next
        end
      end
    elsif surface.surfaceType == 'RoofCeiling'
      # TODO: stop skipping non-horizontal roofs
      unless surface_normal.to_s == straight_upward.to_s
        unless surface.subSurfaces.empty?
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "Cannot currently handle non-horizontal roofs; skipping skylights on #{surface.name} in #{name} for daylight sensor positioning.")
          OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "---Surface #{surface.name} has outward normal of #{surface_normal.to_s.gsub(/\[|\]/, '|')}; up is #{straight_upward.to_s.gsub(/\[|\]/, '|')}.")
          next
        end
      end
    end

    # Find the azimuth of the facade
    facade = nil
    group = surface.planarSurfaceGroup
    if group.is_initialized
      group = group.get
      site_transformation = group.buildingTransformation
      site_vertices = site_transformation * surface.vertices
      site_outward_normal = OpenStudio.getOutwardNormal(site_vertices)
      if site_outward_normal.empty?
        OpenStudio.logFree(OpenStudio::Error, 'openstudio.model.Space', "Could not compute outward normal for #{surface.name.get}")
        next
      end
      site_outward_normal = site_outward_normal.get
      north = OpenStudio::Vector3d.new(0.0, 1.0, 0.0)
      azimuth = if site_outward_normal.x < 0.0
                  360.0 - OpenStudio.radToDeg(OpenStudio.getAngle(site_outward_normal, north))
                else
                  OpenStudio.radToDeg(OpenStudio.getAngle(site_outward_normal, north))
                end
    else
      # The surface is not in a group; should not hit, since
      # called from Space.surfaces
      next
    end

    # TODO: modify to work for buildings in the southern hemisphere?
    if azimuth >= 315.0 || azimuth < 45.0
      facade = '4-North'
    elsif azimuth >= 45.0 && azimuth < 135.0
      facade = '3-East'
    elsif azimuth >= 135.0 && azimuth < 225.0
      facade = '1-South'
    elsif azimuth >= 225.0 && azimuth < 315.0
      facade = '2-West'
    end

    # Label the facade as "Up" if it is a skylight
    if surface_normal.to_s == straight_upward.to_s
      facade = '0-Up'
    end

    # Loop through all subsurfaces and
    surface.subSurfaces.sort.each do |sub_surface|
      next unless sub_surface.outsideBoundaryCondition == 'Outdoors' && (sub_surface.subSurfaceType == 'FixedWindow' || sub_surface.subSurfaceType == 'OperableWindow' || sub_surface.subSurfaceType == 'Skylight')

      # Find the area
      net_area_m2 = sub_surface.netArea

      # Find the head height and sill height of the window
      vertex_heights_above_floor = []
      sub_surface.vertices.each do |vertex|
        vertex_on_floorplane = floor_surface.plane.project(vertex)
        vertex_heights_above_floor << (vertex - vertex_on_floorplane).length
      end
      head_height_m = vertex_heights_above_floor.max
      # OpenStudio::logFree(OpenStudio::Info, "openstudio.model.Space", "---head height = #{head_height_m}m, sill height = #{sill_height_m}m")

      # Log the window properties to use when creating daylight sensors
      properties = { facade: facade, area_m2: net_area_m2, handle: sub_surface.handle, head_height_m: head_height_m, name: sub_surface.name.get.to_s }
      if facade == '0-Up'
        skylights[sub_surface] = properties
      else
        windows[sub_surface] = properties
      end
    end # next sub-surface
  end # next surface

  # Determine the illuminance setpoint for the controls based on space type
  # From IESNA Handbook 10th Edition - Applications
  daylight_stpt_lux = 300
  #
  #
  #     space_type = self.space_type
  #     if space_type.empty?
  #       OpenStudio::logFree(OpenStudio::Warn, "openstudio.model.Space", "Space #{space.name} is an unknown space type, assuming Office and 300 Lux daylight setpoint")
  #     else
  #       space_type = space_type.get
  #       std_spc_type = space_type.standardsSpaceType
  #       if std_spc_type.empty?
  #         OpenStudio::logFree(OpenStudio::Warn, "openstudio.model.Space", "Space #{space.name} does not have a defined standards space type, assuming Office and 300 Lux daylight setpoint")
  #       else
  #         std_spc_type = std_spc_type.get
  #         case std_spc_type
  #         when
  #         Storage = 50
  #         Corridor = 50
  #         Corridor2 = 50
  #         when
  # PatCorridor = 100
  #         'Banquet = 100
  #         Basement = 100
  # Cafe = 100
  # Lobby = 100
  # when
  # Dining = 150
  # GuestRoom = 150
  # GuestRoom2 = 150
  # GuestRoom3 = 150
  # GuestRoom4 = 150
  # when
  # Mechanical = 200
  # Retail = 200
  # Retail2 = 200
  # when
  # Laundry = 300
  # Office = 300
  # when
  # ER_NurseStn = 500
  # ICU_Open = 500
  # ICU_PatRm = 500
  # Kitchen = 500
  # Lab = 500
  # NurseStn = 500
  # ICU_NurseStn = 500
  # PatRoom = 500
  # PhysTherapy = 500
  # Radiology = 500
  # when
  # ER_Exam = 1000
  # ER_Trauma = 1000
  # ER_Triage = 1000
  # when
  # OR = 2000
  #
  # FullServiceRestaurant.Dining
  # FullServiceRestaurant
  #
  # Hospital.Corridor
  # Hospital.Dining
  # Hospital.ER_Exam
  # Hospital.ER_NurseStn
  # Hospital.ER_Trauma
  # Hospital.ER_Triage
  # Hospital.ICU_NurseStn
  # Hospital.ICU_Open
  # Hospital.ICU_PatRm
  # Hospital.Kitchen
  # Hospital.Lab
  # Hospital.Lobby
  # Hospital.NurseStn
  # Hospital.Office
  # Hospital.OR
  # Hospital.PatCorridor
  # Hospital.PatRoom
  # Hospital.PhysTherapy
  # Hospital.Radiology
  #
  # LargeHotel.Banquet
  # LargeHotel.Basement
  # LargeHotel.Cafe
  # LargeHotel.Corridor
  # LargeHotel.Corridor2
  # LargeHotel.GuestRoom
  # LargeHotel.GuestRoom2
  # LargeHotel.GuestRoom3
  # LargeHotel.GuestRoom4
  # LargeHotel.Kitchen
  # LargeHotel.Laundry
  # LargeHotel.Lobby
  # LargeHotel.Mechanical
  # LargeHotel.Retail
  # LargeHotel.Retail2
  # LargeHotel.Storage
  #
  # MidriseApartment.Apartment
  # MidriseApartment.Corridor
  # MidriseApartment.Office
  #
  # Office
  # Office.Attic
  # Office.BreakRoom
  # Office.ClosedOffice
  # Office.Conference
  # Office.Corridor
  # Office.Elec/MechRoom
  # Office.IT_Room
  # Office.Lobby
  # Office.OpenOffice
  # Office.PrintRoom
  # Office.Restroom
  # Office.Stair
  # Office.Storage
  # Office.Vending
  # Office.WholeBuilding - Lg Office
  # Office.WholeBuilding - Md Office
  # Office.WholeBuilding - Sm Office
  #
  # Outpatient.Anesthesia
  # Outpatient.BioHazard
  # Outpatient.Cafe
  # Outpatient.CleanWork
  # Outpatient.Conference
  # Outpatient.DressingRoom
  # Outpatient.Elec/MechRoom
  # Outpatient.Exam
  # Outpatient.Hall
  # Outpatient.IT_Room
  # Outpatient.Janitor
  # Outpatient.Lobby
  # Outpatient.LockerRoom
  # Outpatient.Lounge
  # Outpatient.MedGas
  # Outpatient.MRI
  # Outpatient.MRI_Control
  # Outpatient.NurseStation
  # Outpatient.Office
  # Outpatient.OR
  # Outpatient.PACU
  # Outpatient.PhysicalTherapy
  # Outpatient.PreOp
  # Outpatient.ProcedureRoom
  # Outpatient.Soil Work
  # Outpatient.Stair
  # Outpatient.Toilet
  # Outpatient.Xray
  #
  # PrimarySchool.Cafeteria
  # PrimarySchool.Classroom
  # PrimarySchool.Corridor
  # PrimarySchool.Gym
  # PrimarySchool.Kitchen
  # PrimarySchool.Library
  # PrimarySchool.Lobby
  # PrimarySchool.Mechanical
  # PrimarySchool.Office
  # PrimarySchool.Restroom
  #
  # QuickServiceRestaurant.Dining
  # QuickServiceRestaurant.Kitchen
  #
  # Retail.Back_Space
  # Retail.Entry
  # Retail.Point_of_Sale
  # Retail.Retail
  #
  # SecondarySchool.Auditorium
  # SecondarySchool.Cafeteria
  # SecondarySchool.Classroom
  # SecondarySchool.Corridor
  # SecondarySchool.Gym
  # SecondarySchool.Kitchen
  # SecondarySchool.Library
  # SecondarySchool.Lobby
  # SecondarySchool.Mechanical
  # SecondarySchool.Office
  # SecondarySchool.Restroom
  #
  # SmallHotel.Attic
  # SmallHotel.Corridor
  # SmallHotel.Corridor4
  # SmallHotel.Elec/MechRoom
  # SmallHotel.ElevatorCore
  # SmallHotel.ElevatorCore4
  # SmallHotel.Exercise
  # SmallHotel.GuestLounge
  # SmallHotel.GuestRoom
  # SmallHotel.GuestRoom123Occ
  # SmallHotel.GuestRoom123Vac
  # SmallHotel.GuestRoom4Occ
  # SmallHotel.GuestRoom4Vac
  # SmallHotel.Laundry
  # SmallHotel.Mechanical
  # SmallHotel.Meeting
  # SmallHotel.Office
  # SmallHotel.PublicRestroom
  # SmallHotel.StaffLounge
  # SmallHotel.Stair
  # SmallHotel.Stair4
  # SmallHotel.Storage
  # SmallHotel.Storage4
  #
  # StripMall.WholeBuilding
  #
  # SuperMarket.Deli/Bakery
  # SuperMarket.DryStorage
  # SuperMarket.Office
  # SuperMarket.Sales/Produce
  #
  # Warehouse.Bulk
  # Warehouse.Fine
  # Warehouse.Office
  #
  #
  #         if std_spc_type.match(/post-office/i)# Post Office 500 Lux
  #           daylight_stpt_lux = 500
  #         elsif std_spc_type.match(/medical-office/i)# Medical Office 3000 Lux
  #           daylight_stpt_lux = 3000
  #         elsif std_spc_type.match(/office/i)# Office 500 Lux
  #           daylight_stpt_lux = 500
  #         elsif std_spc_type.match(/education/i)# School 500 Lux
  #           daylight_stpt_lux = 500
  #         elsif std_spc_type.match(/retail/i)# Retail 1000 Lux
  #           daylight_stpt_lux = 1000
  #         elsif std_spc_type.match(/warehouse/i)# Warehouse 200 Lux
  #           daylight_stpt_lux = 200
  #         elsif std_spc_type.match(/hotel/i)# Hotel 300 Lux
  #           daylight_stpt_lux = 300
  #         elsif std_spc_type.match(/multifamily/i)# Apartment 200 Lux
  #           daylight_stpt_lux = 200
  #         elsif std_spc_type.match(/courthouse/i)# Courthouse 300 Lux
  #           daylight_stpt_lux = 300
  #         elsif std_spc_type.match(/library/i)# Library 500 Lux
  #           daylight_stpt_lux = 500
  #         elsif std_spc_type.match(/community-center/i)# Community Center 300 Lux
  #           daylight_stpt_lux = 300
  #         elsif std_spc_type.match(/senior-center/i)# Senior Center 1000 Lux
  #           daylight_stpt_lux = 1000
  #         elsif std_spc_type.match(/city-hall/i)# City Hall 500 Lux
  #           daylight_stpt_lux = 500
  #         else
  #           OpenStudio::logFree(OpenStudio::Warn, "openstudio.model.Space", "Space #{std_spc_type} is an unknown space type, assuming office and 300 Lux daylight setpoint")
  #           daylight_stpt_lux = 300
  #         end
  #       end
  #     end

  # Get the zone that the space is in
  zone = thermalZone
  if zone.empty?
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.model.Space', "Space #{name.get} has no thermal zone")
  else
    zone = zone.get
  end

  # Sort by priority; first by facade, then by area,
  # then by name to ensure deterministic in case identical in other ways
  sorted_windows = windows.sort_by { |_window, vals| [vals[:facade], vals[:area], vals[:name]] }
  sorted_skylights = skylights.sort_by { |_skylight, vals| [vals[:facade], vals[:area], vals[:name]] }

  # Report out the sorted skylights for debugging
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, Skylights:")
  sorted_skylights.each do |sky, p|
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "---#{sky.name} #{p[:facade]}, area = #{p[:area_m2].round(2)} m^2")
  end

  # Report out the sorted windows for debugging
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, Windows:")
  sorted_windows.each do |win, p|
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "---#{win.name} #{p[:facade]}, area = #{p[:area_m2].round(2)} m^2")
  end

  # Add the required controls
  sensor_1_frac = 0.0
  sensor_2_frac = 0.0
  sensor_1_window = nil
  sensor_2_window = nil

  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'

    # Do nothing, no daylighting controls required

  when '90.1-2010', 'AssetScore'

    if req_top_ctrl && req_pri_ctrl
      # Sensor 1 controls toplighted area
      sensor_1_frac = areas['toplighted_area'] / space_area_m2
      sensor_1_window = sorted_skylights[0]
      # Sensor 2 controls primary area
      sensor_2_frac = areas['primary_sidelighted_area'] / space_area_m2
      sensor_2_window = sorted_windows[0]
    elsif req_top_ctrl && !req_pri_ctrl
      # Sensor 1 controls toplighted area
      sensor_1_frac = areas['toplighted_area'] / space_area_m2
      sensor_1_window = sorted_skylights[0]
    elsif !req_top_ctrl && req_pri_ctrl
      if sorted_windows.size == 1
        # Sensor 1 controls the whole primary area
        sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
        sensor_1_window = sorted_windows[0]
      else
        # Sensor 1 controls half the primary area
        sensor_1_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2
        sensor_1_window = sorted_windows[0]
        # Sensor 2 controls the other half of primary area
        sensor_2_frac = (areas['primary_sidelighted_area'] / space_area_m2) / 2
        sensor_2_window = sorted_windows[1]
      end
    end

  when '90.1-2013'

    if req_top_ctrl && req_pri_ctrl && req_sec_ctrl
      # Sensor 1 controls toplighted area
      sensor_1_frac = areas['toplighted_area'] / space_area_m2
      sensor_1_window = sorted_skylights[0]
      # Sensor 2 controls primary + secondary area
      sensor_2_frac = (areas['primary_sidelighted_area'] + areas['secondary_sidelighted_area']) / space_area_m2
      sensor_2_window = sorted_windows[0]
    elsif !req_top_ctrl && req_pri_ctrl && req_sec_ctrl
      # Sensor 1 controls primary area
      sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
      sensor_1_window = sorted_windows[0]
      # Sensor 2 controls secondary area
      sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2)
      sensor_2_window = sorted_windows[0]
    elsif req_top_ctrl && !req_pri_ctrl && req_sec_ctrl
      # Sensor 1 controls toplighted area
      sensor_1_frac = areas['toplighted_area'] / space_area_m2
      sensor_1_window = sorted_skylights[0]
      # Sensor 2 controls secondary area
      sensor_2_frac = (areas['secondary_sidelighted_area'] / space_area_m2)
      sensor_2_window = sorted_windows[0]
    elsif req_top_ctrl && !req_pri_ctrl && !req_sec_ctrl
      # Sensor 1 controls toplighted area
      sensor_1_frac = areas['toplighted_area'] / space_area_m2
      sensor_1_window = sorted_skylights[0]
    elsif !req_top_ctrl && req_pri_ctrl && !req_sec_ctrl
      # Sensor 1 controls primary area
      sensor_1_frac = areas['primary_sidelighted_area'] / space_area_m2
      sensor_1_window = sorted_windows[0]
    elsif !req_top_ctrl && !req_pri_ctrl && req_sec_ctrl
      # Sensor 1 controls secondary area
      sensor_1_frac = areas['secondary_sidelighted_area'] / space_area_m2
      sensor_1_window = sorted_windows[0]
    end

  end # End of template case statement

  # Place the sensors and set control fractions
  # get the zone that the space is in
  zone = thermalZone
  if zone.empty?
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.model.Space', "Space #{name}, cannot determine daylighted areas.")
    return false
  else
    zone = thermalZone.get
  end

  # Ensure that total controlled fraction
  # is never set above 1 (100%)
  if sensor_1_frac + sensor_2_frac >= 1.0
    # Lower sensor_2_frac so that the total
    # is just slightly lower than 1.0
    sensor_2_frac = 1.0 - sensor_1_frac - 0.001
  end

  # Sensors
  if sensor_1_frac > 0.0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, sensor 1 controls #{(sensor_1_frac * 100).round}% of the zone lighting.")
  end
  if sensor_2_frac > 0.0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', "For #{name}, sensor 2 controls #{(sensor_2_frac * 100).round}% of the zone lighting.")
  end

  # First sensor
  if sensor_1_window
    # OpenStudio::logFree(OpenStudio::Info, "openstudio.model.Space", "For #{self.name}, calculating daylighted areas.")
    # runner.registerInfo("Daylight sensor 1 inside of #{sensor_1_frac.name}")
    sensor_1 = OpenStudio::Model::DaylightingControl.new(model)
    sensor_1.setName("#{name} Daylt Sensor 1")
    sensor_1.setSpace(self)
    sensor_1.setIlluminanceSetpoint(daylight_stpt_lux)
    sensor_1.setLightingControlType('Stepped')
    sensor_1.setNumberofSteppedControlSteps(3) # all sensors 3-step per design
    # Place sensor depending on skylight or window
    sensor_vertex = nil
    if sensor_1_window[1][:facade] == '0-Up'
      sub_surface = sensor_1_window[0]
      outward_normal = sub_surface.outwardNormal
      centroid = OpenStudio.getCentroid(sub_surface.vertices).get
      ht_above_flr = OpenStudio.convert(3.0, 'ft', 'm').get
      outward_normal.setLength(sensor_1_window[1][:head_height_m] - ht_above_flr)
      sensor_vertex = centroid + outward_normal.reverseVector
    else
      sub_surface = sensor_1_window[0]
      window_outward_normal = sub_surface.outwardNormal
      window_centroid = OpenStudio.getCentroid(sub_surface.vertices).get
      window_outward_normal.setLength(sensor_1_window[1][:head_height_m])
      vertex = window_centroid + window_outward_normal.reverseVector
      vertex_on_floorplane = floor_surface.plane.project(vertex)
      floor_outward_normal = floor_surface.outwardNormal
      floor_outward_normal.setLength(OpenStudio.convert(3.0, 'ft', 'm').get)
      sensor_vertex = vertex_on_floorplane + floor_outward_normal.reverseVector
    end
    sensor_1.setPosition(sensor_vertex)
    # TODO: rotate sensor to face window (only needed for glare calcs)
    zone.setPrimaryDaylightingControl(sensor_1)
    zone.setFractionofZoneControlledbyPrimaryDaylightingControl(sensor_1_frac)
  end

  # Second sensor
  if sensor_2_window
    # OpenStudio::logFree(OpenStudio::Info, "openstudio.model.Space", "For #{self.name}, calculating daylighted areas.")
    # runner.registerInfo("Daylight sensor 2 inside of #{sensor_2_frac.name}")
    sensor_2 = OpenStudio::Model::DaylightingControl.new(model)
    sensor_2.setName("#{name} Daylt Sensor 2")
    sensor_2.setSpace(self)
    sensor_2.setIlluminanceSetpoint(daylight_stpt_lux)
    sensor_2.setLightingControlType('Stepped')
    sensor_2.setNumberofSteppedControlSteps(3) # all sensors 3-step per design
    # Place sensor depending on skylight or window
    sensor_vertex = nil
    if sensor_2_window[1][:facade] == '0-Up'
      sub_surface = sensor_2_window[0]
      outward_normal = sub_surface.outwardNormal
      centroid = OpenStudio.getCentroid(sub_surface.vertices).get
      ht_above_flr = OpenStudio.convert(3.0, 'ft', 'm').get
      outward_normal.setLength(sensor_2_window[1][:head_height_m] - ht_above_flr)
      sensor_vertex = centroid + outward_normal.reverseVector
    else
      sub_surface = sensor_2_window[0]
      window_outward_normal = sub_surface.outwardNormal
      window_centroid = OpenStudio.getCentroid(sub_surface.vertices).get
      window_outward_normal.setLength(sensor_2_window[1][:head_height_m])
      vertex = window_centroid + window_outward_normal.reverseVector
      vertex_on_floorplane = floor_surface.plane.project(vertex)
      floor_outward_normal = floor_surface.outwardNormal
      floor_outward_normal.setLength(OpenStudio.convert(3.0, 'ft', 'm').get)
      sensor_vertex = vertex_on_floorplane + floor_outward_normal.reverseVector
    end
    sensor_2.setPosition(sensor_vertex)
    # TODO: rotate sensor to face window (only needed for glare calcs)
    zone.setSecondaryDaylightingControl(sensor_2)
    zone.setFractionofZoneControlledbySecondaryDaylightingControl(sensor_2_frac)
  end

  return true
end

#apply_infiltration_rate(template) ⇒ Double

TODO:

handle doors and vestibules

Set the infiltration rate for this space to include the impact of air leakage requirements in the standard.

Parameters:

  • template (String)

    choices are ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Double)

    true if successful, false if not



1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1543

def apply_infiltration_rate(template)
  # Define the total building baseline infiltration rate
  basic_infil_rate_cfm_per_ft2 = nil
  infil_type = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.Standards.Model', "For #{template}, infiltration rates are not defined using this method, no changes have been made to the model.")
    return true
  when '90.1-2004', '90.1-2007'
    basic_infil_rate_cfm_per_ft2 = 1.8
  when '90.1-2010', '90.1-2013'
    basic_infil_rate_cfm_per_ft2 = 1.0
  end

  # Conversion factor
  # 1 m^3/s*m^2 = 196.85 cfm/ft2
  conv_fact = 196.85

  # Adjust the infiltration rate to the average pressure
  # for the prototype buildings.
  adj_infil_rate_m3_per_s_per_m2 = nil
  all_ext_infil_m3_per_s_per_m2 = nil
  case template
  when 'NECB 2011'
    # Remove infiltration rates set at the space type.
    unless spaceType.empty?
      spaceType.get.spaceInfiltrationDesignFlowRates.each(&:remove)
    end
    # Remove infiltration rates set at the space object.
    spaceInfiltrationDesignFlowRates.each(&:remove)

    adj_infil_rate_m3_per_s_per_m2 = 0.25 * 0.001 # m3/s/m2
    exterior_wall_and_roof_and_subsurface_area = self.exterior_wall_and_roof_and_subsurface_area # To do
    # Don't create an object if there is no exterior wall area
    if exterior_wall_and_roof_and_subsurface_area <= 0.0
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.Standards.Model', "For #{template}, no exterior wall area was found, no infiltration will be added.")
      return true
    end
    # Calculate the total infiltration, assuming
    # that it only occurs through exterior walls and roofs (not floors as
    # explicit stated in the NECB 2011 so overhang/cantilevered floors will
    # have no effective infiltration)
    tot_infil_m3_per_s = adj_infil_rate_m3_per_s_per_m2 * exterior_wall_and_roof_and_subsurface_area
    # Now spread the total infiltration rate over all
    # exterior surface area (for the E+ input field) this will include the exterior floor if present.
    all_ext_infil_m3_per_s_per_m2 = tot_infil_m3_per_s / exteriorArea

  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'
    adj_infil_rate_cfm_per_ft2 = adjust_infiltration_to_prototype_building_conditions(basic_infil_rate_cfm_per_ft2)
    adj_infil_rate_m3_per_s_per_m2 = adj_infil_rate_cfm_per_ft2 / conv_fact
    # Get the exterior wall area
    exterior_wall_and_window_area_m2 = exterior_wall_and_window_area

    # Don't create an object if there is no exterior wall area
    if exterior_wall_and_window_area_m2 <= 0.0
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.Standards.Model', "For #{template}, no exterior wall area was found, no infiltration will be added.")
      return true
    end

    # Calculate the total infiltration, assuming
    # that it only occurs through exterior walls
    tot_infil_m3_per_s = adj_infil_rate_m3_per_s_per_m2 * exterior_wall_and_window_area_m2

    # Now spread the total infiltration rate over all
    # exterior surface areas (for the E+ input field)
    all_ext_infil_m3_per_s_per_m2 = tot_infil_m3_per_s / exteriorArea

  end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.Standards.Space', "For #{name}, adj infil = #{all_ext_infil_m3_per_s_per_m2.round(8)} m^3/s*m^2.")

  # Get any infiltration schedule already assigned to this space or its space type
  # If not, the always on schedule will be applied.
  infil_sch = nil
  unless spaceInfiltrationDesignFlowRates.empty?
    old_infil = spaceInfiltrationDesignFlowRates[0]
    if old_infil.schedule.is_initialized
      infil_sch = old_infil.schedule.get
    end
  end

  if infil_sch.nil? && spaceType.is_initialized
    space_type = spaceType.get
    unless space_type.spaceInfiltrationDesignFlowRates.empty?
      old_infil = space_type.spaceInfiltrationDesignFlowRates[0]
      if old_infil.schedule.is_initialized
        infil_sch = old_infil.schedule.get
      end
    end
  end

  if infil_sch.nil?
    infil_sch = model.alwaysOnDiscreteSchedule
  end

  # Create an infiltration rate object for this space
  infiltration = OpenStudio::Model::SpaceInfiltrationDesignFlowRate.new(model)
  infiltration.setName("#{name} Infiltration")
  # infiltration.setFlowperExteriorWallArea(adj_infil_rate_m3_per_s_per_m2)
  infiltration.setFlowperExteriorSurfaceArea(all_ext_infil_m3_per_s_per_m2)
  infiltration.setSchedule(infil_sch)
  infiltration.setConstantTermCoefficient(0.0)
  infiltration.setTemperatureTermCoefficient 0.0
  infiltration.setVelocityTermCoefficient(0.224)
  infiltration.setVelocitySquaredTermCoefficient(0.0)

  infiltration.setSpace(self)

  return true
end

#component_infiltration_rate(template) ⇒ Double

TODO:

handle floors over unconditioned spaces

TODO:

make subsurface infil rates part of Surface.component_infiltration_rate?

Determine the component infiltration rate for this space

Parameters:

  • template (String)

    choices are ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Double)

    infiltration rate @units cubic meters per second (m^3/s)



1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1661

def component_infiltration_rate(template)
  # Define the total building baseline infiltration rate
  basic_infil_rate_cfm_per_ft2 = nil
  infil_type = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.Standards.Model', "For #{template}, infiltration rates are not defined using this method, no changes have been made to the model.")
    return true
  when '90.1-2004', '90.1-2007'
    basic_infil_rate_cfm_per_ft2 = 1.8
  when '90.1-2010', '90.1-2013'
    basic_infil_rate_cfm_per_ft2 = 1.0
  end

  # Calculate the basic infiltration rate
  ext_area_m2 = exteriorArea
  ext_area_ft2 = OpenStudio.convert(ext_area_m2, 'm^2', 'ft^2').get
  basic_infil_cfm = basic_infil_rate_cfm_per_ft2 * ext_area_ft2
  basic_infil_m3_per_s = OpenStudio.convert(basic_infil_cfm, 'cfm', 'm^3/s').get

  # Calculate the baseline component infiltration rate
  infil_type = 'baseline'
  base_comp_infil_m3_per_s = 0.0
  surfaces.sort.each do |surface|
    # This surface
    base_comp_infil_m3_per_s += surface.component_infiltration_rate(infil_type)
    # Subsurfaces in this surface
    # TODO make this part of Surface.component_infiltration_rate?
    surface.subSurfaces.sort.each do |subsurface|
      base_comp_infil_m3_per_s += subsurface.component_infiltration_rate(infil_type)
    end
  end
  base_comp_infil_cfm = OpenStudio.convert(base_comp_infil_m3_per_s, 'm^3/s', 'cfm').get

  # Calculate the advanced component infiltration rate
  infil_type = 'advanced'
  adv_comp_infil_m3_per_s = 0.0
  surfaces.sort.each do |surface|
    # This surface
    adv_comp_infil_m3_per_s += surface.component_infiltration_rate(infil_type)
    # Subsurfaces in this surface
    # TODO make this part of Surface.component_infiltration_rate?
    surface.subSurfaces.sort.each do |subsurface|
      adv_comp_infil_m3_per_s += subsurface.component_infiltration_rate(infil_type)
    end
  end
  adv_comp_infil_cfm = OpenStudio.convert(adv_comp_infil_m3_per_s, 'm^3/s', 'cfm').get

  # Calculate the adjusted infiltration rate
  infil_m3_per_s = basic_infil_m3_per_s - base_comp_infil_m3_per_s + adv_comp_infil_m3_per_s

  # Adjust the infiltration from 75Pa to 4Pa
  intial_pressure_pa = 75.0
  final_pressure_pa = 4.0
  adj_infil_m3_per_s = adjust_infiltration_to_lower_pressure(infil_m3_per_s, intial_pressure_pa, final_pressure_pa)

  # Calculate the rate per exterior area
  adj_infil_m3_per_s_per_m2 = adj_infil_m3_per_s / ext_area_m2

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.Standards.Space', "For #{name}, infil = #{adj_infil_m3_per_s_per_m2.round(8)} m^3/s*m^2.")
  #=> infil = #{comp_infil_rate_m3_per_s.round(2)} m^3/s, ext area = #{tot_ext_area_m2.round} m^2")
  # OpenStudio::logFree(OpenStudio::Debug, "openstudio.Standards.Space", "For #{self.name}, comp infil = #{comp_infil_rate_cfm_per_ft2.round(4)} cfm/ft2 => infil = #{comp_infil_rate_cfm.round(2)} cfm, ext area = #{tot_ext_area_ft2.round} ft2")
  # OpenStudio::logFree(OpenStudio::Debug, "openstudio.Standards.Space", "For #{self.name}")

  return adj_infil_m3_per_s
end

#conditioning_category(template, climate_zone) ⇒ String

TODO:

add logic to detect indirectly-conditioned spaces

Determines whether the space is conditioned per 90.1, which is based on heating and cooling loads.

Parameters:

  • climate_zone (String)

    climate zone

Returns:

  • (String)

    NonResConditioned, ResConditioned, Semiheated, Unconditioned



1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1892

def conditioning_category(template, climate_zone)
  # Get the zone this space is inside
  zone = thermalZone

  # Assume unconditioned if not assigned to a zone
  if zone.empty?
    return 'Unconditioned'
  end

  # Get the category from the zone
  cond_cat = zone.get.conditioning_category(template, climate_zone)

  return cond_cat
end

#cooled?Bool

Determines cooling status. If the space’s zone has a thermostat with a minimum cooling setpoint above 33C (91F), counts as cooled.

Returns:

  • (Bool)

    true if cooled, false if not

Author:

  • Andrew Parker, Julien Marrec



1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1934

def cooled?
  # Get the zone this space is inside
  zone = thermalZone

  # Assume uncooled if not assigned to a zone
  if zone.empty?
    return false
  end

  # Get the category from the zone
  cld = zone.get.cooled?

  return cld
end

#daylighted_areas(template, draw_daylight_areas_for_debugging = false) ⇒ Hash

TODO:

add a list of valid choices for template argument

Note:

This method is super complicated because of all the polygon/geometry math required. and therefore may not return perfect results. However, it works well in most tested situations. When it fails, it will log warnings/errors for users to see.

Returns values for the different types of daylighted areas in the space. Definitions for each type of area follow the respective template. TODO stop skipping non-vertical walls

Parameters:

  • template (String)

    template to use. valid choices:

  • draw_daylight_areas_for_debugging (Bool) (defaults to: false)

    If this argument is set to true, daylight areas will be added to the model as surfaces for visual debugging. Yellow = toplighted area, Red = primary sidelighted area, Blue = secondary sidelighted area, Light Blue = floor

Returns:

  • (Hash)

    returns a hash of resulting areas (m^2). Hash keys are: ‘toplighted_area’, ‘primary_sidelighted_area’, ‘secondary_sidelighted_area’, ‘total_window_area’, ‘total_skylight_area’



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 20

def daylighted_areas(template, draw_daylight_areas_for_debugging = false)
  ### Begin the actual daylight area calculations ###

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "For #{name}, calculating daylighted areas.")

  result = { 'toplighted_area' => 0.0,
             'primary_sidelighted_area' => 0.0,
             'secondary_sidelighted_area' => 0.0,
             'total_window_area' => 0.0,
             'total_skylight_area' => 0.0 }

  total_window_area = 0
  total_skylight_area = 0

  # Make rendering colors to help debug visually
  if draw_daylight_areas_for_debugging
    # Yellow
    toplit_construction = OpenStudio::Model::Construction.new(model)
    toplit_color = OpenStudio::Model::RenderingColor.new(model)
    toplit_color.setRenderingRedValue(255)
    toplit_color.setRenderingGreenValue(255)
    toplit_color.setRenderingBlueValue(0)
    toplit_construction.setRenderingColor(toplit_color)

    # Red
    pri_sidelit_construction = OpenStudio::Model::Construction.new(model)
    pri_sidelit_color = OpenStudio::Model::RenderingColor.new(model)
    pri_sidelit_color.setRenderingRedValue(255)
    pri_sidelit_color.setRenderingGreenValue(0)
    pri_sidelit_color.setRenderingBlueValue(0)
    pri_sidelit_construction.setRenderingColor(pri_sidelit_color)

    # Blue
    sec_sidelit_construction = OpenStudio::Model::Construction.new(model)
    sec_sidelit_color = OpenStudio::Model::RenderingColor.new(model)
    sec_sidelit_color.setRenderingRedValue(0)
    sec_sidelit_color.setRenderingGreenValue(0)
    sec_sidelit_color.setRenderingBlueValue(255)
    sec_sidelit_construction.setRenderingColor(sec_sidelit_color)

    # Light Blue
    flr_construction = OpenStudio::Model::Construction.new(model)
    flr_color = OpenStudio::Model::RenderingColor.new(model)
    flr_color.setRenderingRedValue(0)
    flr_color.setRenderingGreenValue(255)
    flr_color.setRenderingBlueValue(255)
    flr_construction.setRenderingColor(flr_color)
  end

  # Move the polygon up slightly for viewability in sketchup
  up_translation_flr = OpenStudio.createTranslation(OpenStudio::Vector3d.new(0, 0, 0.05))
  up_translation_top = OpenStudio.createTranslation(OpenStudio::Vector3d.new(0, 0, 0.1))
  up_translation_pri = OpenStudio.createTranslation(OpenStudio::Vector3d.new(0, 0, 0.1))
  up_translation_sec = OpenStudio.createTranslation(OpenStudio::Vector3d.new(0, 0, 0.1))

  # Get the space's surface group's transformation
  @space_transformation = transformation

  # Record a floor in the space for later use
  floor_surface = nil

  # Record all floor polygons
  floor_polygons = []
  floor_z = 0.0
  surfaces.sort.each do |surface|
    if surface.surfaceType == 'Floor'
      floor_surface = surface
      floor_z = surface.vertices[0].z
      # floor_polygons << surface.vertices
      # Hard-set the z for the floor to zero
      new_floor_polygon = []
      surface.vertices.each do |vertex|
        new_floor_polygon << OpenStudio::Point3d.new(vertex.x, vertex.y, 0.0)
      end
      floor_polygons << new_floor_polygon
    end
  end

  # Make sure there is one floor surface
  if floor_surface.nil?
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "Could not find a floor in space #{name.get}, cannot determine daylighted areas.")
    return result
  end

  # Make a set of vertices representing each subsurfaces sidelighteding area
  # and fold them all down onto the floor of the self.
  toplit_polygons = []
  pri_sidelit_polygons = []
  sec_sidelit_polygons = []
  surfaces.sort.each do |surface|
    if surface.outsideBoundaryCondition == 'Outdoors' && surface.surfaceType == 'Wall'

      # TODO: stop skipping non-vertical walls
      surface_normal = surface.outwardNormal
      surface_normal_z = surface_normal.z
      unless surface_normal_z.abs < 0.001
        unless surface.subSurfaces.empty?
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "Cannot currently handle non-vertical walls; skipping windows on #{surface.name} in #{name}.")
          next
        end
      end

      surface.subSurfaces.sort.each do |sub_surface|
        next unless sub_surface.outsideBoundaryCondition == 'Outdoors' && (sub_surface.subSurfaceType == 'FixedWindow' || sub_surface.subSurfaceType == 'OperableWindow' || sub_surface.subSurfaceType == 'GlassDoor')

        # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "***#{sub_surface.name}***"
        total_window_area += sub_surface.netArea

        # Find the head height and sill height of the window
        vertex_heights_above_floor = []
        sub_surface.vertices.each do |vertex|
          vertex_on_floorplane = floor_surface.plane.project(vertex)
          vertex_heights_above_floor << (vertex - vertex_on_floorplane).length
        end
        sill_height_m = vertex_heights_above_floor.min
        head_height_m = vertex_heights_above_floor.max
        # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "head height = #{head_height_m.round(2)}m, sill height = #{sill_height_m.round(2)}m")

        # Find the width of the window
        rot_origin = nil
        unless sub_surface.vertices.size == 4
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "A sub-surface in space #{name} has other than 4 vertices; this sub-surface will not be included in the daylighted area calculation.")
          next
        end
        prev_vertex_on_floorplane = nil
        max_window_width_m = 0
        sub_surface.vertices.each do |vertex|
          vertex_on_floorplane = floor_surface.plane.project(vertex)
          unless prev_vertex_on_floorplane
            prev_vertex_on_floorplane = vertex_on_floorplane
            next
          end
          width_m = (prev_vertex_on_floorplane - vertex_on_floorplane).length
          if width_m > max_window_width_m
            max_window_width_m = width_m
            rot_origin = vertex_on_floorplane
          end
        end

        # Determine the extra width to add to the sidelighted area
        extra_width_m = 0
        if template == '90.1-2013'
          extra_width_m = head_height_m / 2
        elsif template == '90.1-2010'
          extra_width_m = OpenStudio.convert(2, 'ft', 'm').get
        end
        # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "Adding #{extra_width_m.round(2)}m to the width for the sidelighted area.")

        # Align the vertices with face coordinate system
        face_transform = OpenStudio::Transformation.alignFace(sub_surface.vertices)
        aligned_vertices = face_transform.inverse * sub_surface.vertices

        # Find the min and max x values
        min_x_val = 99_999
        max_x_val = -99_999
        aligned_vertices.each do |vertex|
          # Min x value
          if vertex.x < min_x_val
            min_x_val = vertex.x
          end
          # Max x value
          if vertex.x > max_x_val
            max_x_val = vertex.x
          end
        end
        # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "min_x_val = #{min_x_val.round(2)}, max_x_val = #{max_x_val.round(2)}")

        # Create polygons that are adjusted
        # to expand from the window shape to the sidelighteded areas.
        pri_sidelit_sub_polygon = []
        sec_sidelit_sub_polygon = []
        aligned_vertices.each do |vertex|
          # Primary sidelighted area
          # Move the x vertices outward by the specified amount.
          if (vertex.x - min_x_val).abs < 0.01
            new_x = vertex.x - extra_width_m
          elsif (vertex.x - max_x_val).abs < 0.01
            new_x = vertex.x + extra_width_m
          else
            new_x = 99.9
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "A window in space #{name} is non-rectangular; this sub-surface will not be included in the primary daylighted area calculation. #{vertex.x} != #{min_x_val} or #{max_x_val}")
          end

          # Zero-out the y for the bottom edge because the
          # sidelighteding area extends down to the floor.
          new_y = if vertex.y.zero?
                    vertex.y - sill_height_m
                  else
                    vertex.y
                  end

          # Set z = 0 so that intersection works.
          new_z = 0.0

          # Make the new vertex
          new_vertex = OpenStudio::Point3d.new(new_x, new_y, new_z)
          pri_sidelit_sub_polygon << new_vertex
          # OpenStudio::logFree(OpenStudio::Info, "openstudio.model.Space", "#{vertex.x.round(2)}, #{vertex.y.round(2)}, #{vertex.z.round(2)} ==> #{new_vertex.x.round(2)}, #{new_vertex.y.round(2)}, #{new_vertex.z.round(2)}")

          # Secondary sidelighted area
          # Move the x vertices outward by the specified amount.
          if (vertex.x - min_x_val).abs < 0.01
            new_x = vertex.x - extra_width_m
          elsif (vertex.x - max_x_val).abs < 0.01
            new_x = vertex.x + extra_width_m
          else
            new_x = 99.9
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "A window in space #{name} is non-rectangular; this sub-surface will not be included in the secondary daylighted area calculation.")
          end

          # Add the head height of the window to all points
          # sidelighteding area extends down to the floor.
          new_y = if vertex.y.zero?
                    vertex.y - sill_height_m + head_height_m
                  else
                    vertex.y + head_height_m
                  end

          # Set z = 0 so that intersection works.
          new_z = 0.0

          # Make the new vertex
          new_vertex = OpenStudio::Point3d.new(new_x, new_y, new_z)
          sec_sidelit_sub_polygon << new_vertex
        end

        # Realign the vertices with space coordinate system
        pri_sidelit_sub_polygon = face_transform * pri_sidelit_sub_polygon
        sec_sidelit_sub_polygon = face_transform * sec_sidelit_sub_polygon

        # Rotate the sidelighteded areas down onto the floor
        down_vector = OpenStudio::Vector3d.new(0, 0, -1)
        outward_normal_vector = sub_surface.outwardNormal
        rot_vector = down_vector.cross(outward_normal_vector)
        ninety_deg_in_rad = OpenStudio.degToRad(90) # TODO: change
        new_rotation = OpenStudio.createRotation(rot_origin, rot_vector, ninety_deg_in_rad)
        pri_sidelit_sub_polygon = new_rotation * pri_sidelit_sub_polygon
        sec_sidelit_sub_polygon = new_rotation * sec_sidelit_sub_polygon

        # Put the polygon vertices into counterclockwise order
        pri_sidelit_sub_polygon = pri_sidelit_sub_polygon.reverse
        sec_sidelit_sub_polygon = sec_sidelit_sub_polygon.reverse

        # Add these polygons to the list
        pri_sidelit_polygons << pri_sidelit_sub_polygon
        sec_sidelit_polygons << sec_sidelit_sub_polygon
      end # Next subsurface
    elsif surface.outsideBoundaryCondition == 'Outdoors' && surface.surfaceType == 'RoofCeiling'

      # TODO: stop skipping non-horizontal roofs
      surface_normal = surface.outwardNormal
      straight_upward = OpenStudio::Vector3d.new(0, 0, 1)
      unless surface_normal.to_s == straight_upward.to_s
        unless surface.subSurfaces.empty?
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "Cannot currently handle non-horizontal roofs; skipping skylights on #{surface.name} in #{name}.")
          OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "---Surface #{surface.name} has outward normal of #{surface_normal.to_s.gsub(/\[|\]/, '|')}; up is #{straight_upward.to_s.gsub(/\[|\]/, '|')}.")
          next
        end
      end

      surface.subSurfaces.sort.each do |sub_surface|
        next unless sub_surface.outsideBoundaryCondition == 'Outdoors' && sub_surface.subSurfaceType == 'Skylight'

        # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "***#{sub_surface.name}***")
        total_skylight_area += sub_surface.netArea

        # Project the skylight onto the floor plane
        polygon_on_floor = []
        vertex_heights_above_floor = []
        sub_surface.vertices.each do |vertex|
          vertex_on_floorplane = floor_surface.plane.project(vertex)
          vertex_heights_above_floor << (vertex - vertex_on_floorplane).length
          polygon_on_floor << vertex_on_floorplane
        end

        # Determine the ceiling height.
        # Assumes skylight is flush with ceiling.
        ceiling_height_m = vertex_heights_above_floor.max

        # Align the vertices with face coordinate system
        face_transform = OpenStudio::Transformation.alignFace(polygon_on_floor)
        aligned_vertices = face_transform.inverse * polygon_on_floor

        # Find the min and max x and y values
        min_x_val = 99_999
        max_x_val = -99_999
        min_y_val = 99_999
        max_y_val = -99_999
        aligned_vertices.each do |vertex|
          # Min x value
          if vertex.x < min_x_val
            min_x_val = vertex.x
          end
          # Max x value
          if vertex.x > max_x_val
            max_x_val = vertex.x
          end
          # Min y value
          if vertex.y < min_y_val
            min_y_val = vertex.y
          end
          # Max y value
          if vertex.y > max_x_val
            max_y_val = vertex.y
          end
        end

        # Figure out how much to expand the window
        additional_extent_m = 0.7 * ceiling_height_m

        # Create polygons that are adjusted
        # to expand from the window shape to the sidelighteded areas.
        toplit_sub_polygon = []
        aligned_vertices.each do |vertex|
          # Move the x vertices outward by the specified amount.
          if vertex.x == min_x_val
            new_x = vertex.x - additional_extent_m
          elsif vertex.x == max_x_val
            new_x = vertex.x + additional_extent_m
          else
            new_x = 99.9
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "A skylight in space #{name} is non-rectangular; this sub-surface will not be included in the daylighted area calculation.")
          end

          # Move the y vertices outward by the specified amount.
          if vertex.y == min_y_val
            new_y = vertex.y - additional_extent_m
          elsif vertex.y == max_y_val
            new_y = vertex.y + additional_extent_m
          else
            new_y = 99.9
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "A skylight in space #{name} is non-rectangular; this sub-surface will not be included in the daylighted area calculation.")
          end

          # Set z = 0 so that intersection works.
          new_z = 0.0

          # Make the new vertex
          new_vertex = OpenStudio::Point3d.new(new_x, new_y, new_z)
          toplit_sub_polygon << new_vertex
        end

        # Realign the vertices with space coordinate system
        toplit_sub_polygon = face_transform * toplit_sub_polygon

        # Put the polygon vertices into counterclockwise order
        toplit_sub_polygon = toplit_sub_polygon.reverse

        # Add these polygons to the list
        toplit_polygons << toplit_sub_polygon
      end # Next subsurface

    end # End if outdoor wall or roofceiling
  end # Next surface

  # Set z=0 for all the polygons so that intersection will work
  toplit_polygons = polygons_set_z(toplit_polygons, 0.0)
  pri_sidelit_polygons = polygons_set_z(pri_sidelit_polygons, 0.0)
  sec_sidelit_polygons = polygons_set_z(sec_sidelit_polygons, 0.0)

  # Check the initial polygons
  check_z_zero(floor_polygons, 'floor_polygons', name.get)
  check_z_zero(toplit_polygons, 'toplit_polygons', name.get)
  check_z_zero(pri_sidelit_polygons, 'pri_sidelit_polygons', name.get)
  check_z_zero(sec_sidelit_polygons, 'sec_sidelit_polygons', name.get)

  # Join, then subtract
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', '***Joining polygons***')

  # Join toplighted polygons into a single set
  combined_toplit_polygons = join_polygons(toplit_polygons, 0.01, 'toplit_polygons')

  # Join primary sidelighted polygons into a single set
  combined_pri_sidelit_polygons = join_polygons(pri_sidelit_polygons, 0.01, 'pri_sidelit_polygons')

  # Join secondary sidelighted polygons into a single set
  combined_sec_sidelit_polygons = join_polygons(sec_sidelit_polygons, 0.01, 'sec_sidelit_polygons')

  # Join floor polygons into a single set
  combined_floor_polygons = join_polygons(floor_polygons, 0.01, 'floor_polygons')

  # Check the joined polygons
  check_z_zero(combined_floor_polygons, 'combined_floor_polygons', name.get)
  check_z_zero(combined_toplit_polygons, 'combined_toplit_polygons', name.get)
  check_z_zero(combined_pri_sidelit_polygons, 'combined_pri_sidelit_polygons', name.get)
  check_z_zero(combined_sec_sidelit_polygons, 'combined_sec_sidelit_polygons', name.get)

  # Make a new surface for each of the resulting polygons to visually inspect it
  # OpenStudio::logFree(OpenStudio::Debug, "openstudio.model.Space", "***Making Surfaces to view in SketchUp***")

  # combined_toplit_polygons.each do |polygon|
  # dummy_space = OpenStudio::Model::Space.new(model)
  # polygon = up_translation_top * polygon
  # daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
  # daylt_surf.setConstruction(toplit_construction)
  # daylt_surf.setSpace(dummy_space)
  # daylt_surf.setName("Top")
  # end

  # combined_pri_sidelit_polygons.each do |polygon|
  # dummy_space = OpenStudio::Model::Space.new(model)
  # polygon = up_translation_pri * polygon
  # daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
  # daylt_surf.setConstruction(pri_sidelit_construction)
  # daylt_surf.setSpace(dummy_space)
  # daylt_surf.setName("Pri")
  # end

  # combined_sec_sidelit_polygons.each do |polygon|
  # dummy_space = OpenStudio::Model::Space.new(model)
  # polygon = up_translation_sec * polygon
  # daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
  # daylt_surf.setConstruction(sec_sidelit_construction)
  # daylt_surf.setSpace(dummy_space)
  # daylt_surf.setName("Sec")
  # end

  # combined_floor_polygons.each do |polygon|
  # dummy_space = OpenStudio::Model::Space.new(model)
  # polygon = up_translation_flr * polygon
  # daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
  # daylt_surf.setConstruction(flr_construction)
  # daylt_surf.setSpace(dummy_space)
  # daylt_surf.setName("Flr")
  # end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', '***Subtracting overlapping areas***')

  # Subtract lower-priority daylighting areas from higher priority ones
  pri_minus_top_polygons = a_polygons_minus_b_polygons(combined_pri_sidelit_polygons, combined_toplit_polygons, 'combined_pri_sidelit_polygons', 'combined_toplit_polygons')

  sec_minus_top_polygons = a_polygons_minus_b_polygons(combined_sec_sidelit_polygons, combined_toplit_polygons, 'combined_sec_sidelit_polygons', 'combined_toplit_polygons')

  sec_minus_top_minus_pri_polygons = a_polygons_minus_b_polygons(sec_minus_top_polygons, combined_pri_sidelit_polygons, 'sec_minus_top_polygons', 'combined_pri_sidelit_polygons')

  # Check the subtracted polygons
  check_z_zero(pri_minus_top_polygons, 'pri_minus_top_polygons', name.get)
  check_z_zero(sec_minus_top_polygons, 'sec_minus_top_polygons', name.get)
  check_z_zero(sec_minus_top_minus_pri_polygons, 'sec_minus_top_minus_pri_polygons', name.get)

  # Make a new surface for each of the resulting polygons to visually inspect it.
  # First reset the z so the surfaces show up on the correct plane.
  if draw_daylight_areas_for_debugging

    combined_toplit_polygons_at_floor = polygons_set_z(combined_toplit_polygons, floor_z)
    pri_minus_top_polygons_at_floor = polygons_set_z(pri_minus_top_polygons, floor_z)
    sec_minus_top_minus_pri_polygons_at_floor = polygons_set_z(sec_minus_top_minus_pri_polygons, floor_z)
    combined_floor_polygons_at_floor = polygons_set_z(combined_floor_polygons, floor_z)

    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', '***Making Surfaces to view in SketchUp***')
    dummy_space = OpenStudio::Model::Space.new(model)

    combined_toplit_polygons_at_floor.each do |polygon|
      polygon = up_translation_top * polygon
      polygon = @space_transformation * polygon
      daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
      daylt_surf.setConstruction(toplit_construction)
      daylt_surf.setSpace(dummy_space)
      daylt_surf.setName('Top')
    end

    pri_minus_top_polygons_at_floor.each do |polygon|
      polygon = up_translation_pri * polygon
      polygon = @space_transformation * polygon
      daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
      daylt_surf.setConstruction(pri_sidelit_construction)
      daylt_surf.setSpace(dummy_space)
      daylt_surf.setName('Pri')
    end

    sec_minus_top_minus_pri_polygons_at_floor.each do |polygon|
      polygon = up_translation_sec * polygon
      polygon = @space_transformation * polygon
      daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
      daylt_surf.setConstruction(sec_sidelit_construction)
      daylt_surf.setSpace(dummy_space)
      daylt_surf.setName('Sec')
    end

    combined_floor_polygons_at_floor.each do |polygon|
      polygon = up_translation_flr * polygon
      polygon = @space_transformation * polygon
      daylt_surf = OpenStudio::Model::Surface.new(polygon, model)
      daylt_surf.setConstruction(flr_construction)
      daylt_surf.setSpace(dummy_space)
      daylt_surf.setName('Flr')
    end
  end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', '***Calculating Daylighted Areas***')

  # Get the total floor area
  total_floor_area_m2 = total_area_of_polygons(combined_floor_polygons)
  total_floor_area_ft2 = OpenStudio.convert(total_floor_area_m2, 'm^2', 'ft^2').get
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "total_floor_area_ft2 = #{total_floor_area_ft2.round(1)}")

  # Toplighted area
  toplighted_area_m2 = area_a_polygons_overlap_b_polygons(combined_toplit_polygons, combined_floor_polygons, 'combined_toplit_polygons', 'combined_floor_polygons')

  # Primary sidelighted area
  primary_sidelighted_area_m2 = area_a_polygons_overlap_b_polygons(pri_minus_top_polygons, combined_floor_polygons, 'pri_minus_top_polygons', 'combined_floor_polygons')

  # Secondary sidelighted area
  secondary_sidelighted_area_m2 = area_a_polygons_overlap_b_polygons(sec_minus_top_minus_pri_polygons, combined_floor_polygons, 'sec_minus_top_minus_pri_polygons', 'combined_floor_polygons')

  # Convert to IP for displaying
  toplighted_area_ft2 = OpenStudio.convert(toplighted_area_m2, 'm^2', 'ft^2').get
  primary_sidelighted_area_ft2 = OpenStudio.convert(primary_sidelighted_area_m2, 'm^2', 'ft^2').get
  secondary_sidelighted_area_ft2 = OpenStudio.convert(secondary_sidelighted_area_m2, 'm^2', 'ft^2').get

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "toplighted_area_ft2 = #{toplighted_area_ft2.round(1)}")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "primary_sidelighted_area_ft2 = #{primary_sidelighted_area_ft2.round(1)}")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "secondary_sidelighted_area_ft2 = #{secondary_sidelighted_area_ft2.round(1)}")

  result['toplighted_area'] = toplighted_area_m2
  result['primary_sidelighted_area'] = primary_sidelighted_area_m2
  result['secondary_sidelighted_area'] = secondary_sidelighted_area_m2
  result['total_window_area'] = total_window_area
  result['total_skylight_area'] = total_skylight_area

  return result
end

#design_internal_loadDouble

Determine the design internal load (W) for this space without space multipliers. This include People, Lights, Electric Equipment, and Gas Equipment. It assumes 100% of the wattage is converted to heat, and that the design peak schedule value is 1 (100%).

Returns:

  • (Double)

    the design internal load, in W



1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1957

def design_internal_load
  load_w = 0.0

  # People
  people.each do |people|
    w_per_person = 125 # Initial assumption
    act_sch = people.activityLevelSchedule
    if act_sch.is_initialized
      if act_sch.get.to_ScheduleRuleset.is_initialized
        act_sch = act_sch.get.to_ScheduleRuleset.get
        w_per_person = act_sch.annual_min_max_value['max']
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "#{name} people activity schedule is not a Schedule:Ruleset.  Assuming #{w_per_person}W/person.")
      end
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "#{name} people activity schedule not found.  Assuming #{w_per_person}W/person.")
    end

    num_ppl = people.getNumberOfPeople(floorArea)

    ppl_w = num_ppl * w_per_person

    load_w += ppl_w
  end

  # Lights
  load_w += lightingPower

  # Electric Equipment
  load_w += electricEquipmentPower

  # Gas Equipment
  load_w += gasEquipmentPower

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.model.Space', "#{name} has #{load_w.round}W of design internal loads.")

  return load_w
end

#exterior_wall_and_roof_and_subsurface_areaDouble

Calculate the area of the exterior walls, including the area of the windows on these walls.

Returns:

  • (Double)

    area in m^2



1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1756

def exterior_wall_and_roof_and_subsurface_area
  area_m2 = 0.0

  # Loop through all surfaces in this space
  surfaces.sort.each do |surface|
    # Skip non-outdoor surfaces
    next unless surface.outsideBoundaryCondition == 'Outdoors'
    # Skip non-walls
    next unless surface.surfaceType == 'Wall' || surface.surfaceType == 'RoofCeiling'
    # This surface
    area_m2 += surface.netArea
    # Subsurfaces in this surface
    surface.subSurfaces.sort.each do |subsurface|
      area_m2 += subsurface.netArea
    end
  end

  return area_m2
end

#exterior_wall_and_window_areaDouble

Calculate the area of the exterior walls, including the area of the windows on these walls.

Returns:

  • (Double)

    area in m^2



1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1732

def exterior_wall_and_window_area
  area_m2 = 0.0

  # Loop through all surfaces in this space
  surfaces.sort.each do |surface|
    # Skip non-outdoor surfaces
    next unless surface.outsideBoundaryCondition == 'Outdoors'
    # Skip non-walls
    next unless surface.surfaceType == 'Wall'
    # This surface
    area_m2 += surface.netArea
    # Subsurfaces in this surface
    surface.subSurfaces.sort.each do |subsurface|
      area_m2 += subsurface.netArea
    end
  end

  return area_m2
end

#get_adjacent_space_with_most_shared_wall_area(same_floor = true) ⇒ Object



2051
2052
2053
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 2051

def get_adjacent_space_with_most_shared_wall_area(same_floor = true)
  return get_adjacent_spaces_with_touching_area(same_floor)[0][0]
end

#get_adjacent_spaces_with_shared_wall_areas(same_floor = true) ⇒ Object

will return a sorted array of array of spaces and connected area (Descending)



1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1996

def get_adjacent_spaces_with_shared_wall_areas(same_floor = true)
  same_floor_spaces = []
  spaces = []
  surfaces.each do |surface|
    adj_surface = surface.adjacentSurface
    unless adj_surface.empty?
      model.getSpaces.each do |space|
        next if space == self
        space.surfaces.each do |surf|
          if surf == adj_surface.get
            spaces << space
          end
        end
      end
    end
  end
  # If looking for only spaces adjacent on the same floor.
  if same_floor == true
    raise "Cannot get adjacent spaces of space #{name} since space not set to BuildingStory" if buildingStory.empty?
    spaces.each do |space|
      raise "One or more adjecent spaces to space #{name} is not assigned to a BuildingStory. Ensure all spaces are assigned." if space.buildingStory.empty?
      if space.buildingStory.get == buildingStory.get
        same_floor_spaces << space
      end
    end
    spaces = same_floor_spaces
  end

  # now sort by areas.
  area_index = []
  array_hash = {}
  return nil if spaces.size.zero?
  # iterate through each surface in the space
  surfaces.each do |surface|
    # get the adjacent surface in another space.
    adj_surface = surface.adjacentSurface
    unless adj_surface.empty?
      # go through each of the adjeacent spaces to find the matching  surface/space.
      spaces.each_with_index do |space, index|
        next if space == self
        space.surfaces.each do |surf|
          if surf == adj_surface.get
            # initialize array index to zero for first time so += will work.
            area_index[index] = 0 if area_index[index].nil?
            area_index[index] += surf.grossArea
            array_hash[space] = area_index[index]
          end
        end
      end
    end
  end
  sorted_spaces = array_hash.sort_by { |_key, value| value }.reverse
  return sorted_spaces
end

#heated?Bool

Determines heating status. If the space’s zone has a thermostat with a maximum heating setpoint above 5C (41F), counts as heated.

Returns:

  • (Bool)

    true if heated, false if not

Author:

  • Andrew Parker, Julien Marrec



1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1913

def heated?
  # Get the zone this space is inside
  zone = thermalZone

  # Assume unheated if not assigned to a zone
  if zone.empty?
    return false
  end

  # Get the category from the zone
  htd = zone.get.heated?

  return htd
end

#plenum?Boolean

Determine if the space is a plenum. Assume it is a plenum if it is a supply or return plenum for an AirLoop, if it is not part of the total floor area, or if the space type name contains the word plenum.

return [Bool] returns true if plenum, false if not

Returns:

  • (Boolean)


1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1784

def plenum?
  plenum_status = false

  # Check if it is designated
  # as not part of the building
  # floor area.  This method internally
  # also checks to see if the space's zone
  # is a supply or return plenum
  unless partofTotalFloorArea
    plenum_status = true
    return plenum_status
  end

  # TODO: - update to check if it has internal loads

  # Check if the space type name
  # contains the word plenum.
  space_type = spaceType
  if space_type.is_initialized
    space_type = space_type.get
    if space_type.name.get.to_s.downcase.include?('plenum')
      plenum_status = true
      return plenum_status
    end
    if space_type.standardsSpaceType.is_initialized
      if space_type.standardsSpaceType.get.downcase.include?('plenum')
        plenum_status = true
        return plenum_status
      end
    end
  end

  return plenum_status
end

#residential?(template) ⇒ Boolean

Determine if the space is residential based on the space type properties for the space. For spaces with no space type, assume nonresidential. For spaces that are plenums, base the decision on the space type of the space below the largest floor in the plenum.

return [Bool] true if residential, false if nonresidential

Returns:

  • (Boolean)


1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 1826

def residential?(template)
  is_res = false

  space_to_check = self

  # If this space is a plenum, check the space type
  # of the space below the largest floor in the space
  if plenum?
    # Find the largest floor
    largest_floor_area = 0.0
    largest_surface = nil
    surfaces.each do |surface|
      next unless surface.surfaceType == 'Floor' && surface.outsideBoundaryCondition == 'Surface'
      if surface.grossArea > largest_floor_area
        largest_floor_area = surface.grossArea
        largest_surface = surface
      end
    end
    if largest_surface.nil?
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "#{name} is a plenum, but could not find a floor with a space below it to determine if plenum should be  res or nonres.  Assuming nonresidential.")
      return is_res
    end
    # Get the space on the other side of this floor
    if largest_surface.adjacentSurface.is_initialized
      adj_surface = largest_surface.adjacentSurface.get
      if adj_surface.space.is_initialized
        space_to_check = adj_surface.space.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "#{name} is a plenum, but could not find a space attached to the largest floor's adjacent surface #{adj_surface.name} to determine if plenum should be res or nonres.  Assuming nonresidential.")
        return is_res
      end
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "#{name} is a plenum, but could not find a floor with a space below it to determine if plenum should be  res or nonres.  Assuming nonresidential.")
      return is_res
    end
  end

  space_type = space_to_check.spaceType
  if space_type.is_initialized
    space_type = space_type.get
    # Get the space type data
    space_type_properties = space_type.get_standards_data(template)
    if space_type_properties.nil?
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "Could not find space type properties for #{space_to_check.name}, assuming nonresidential.")
      is_res = false
    else
      is_res = if space_type_properties['is_residential'] == 'Yes'
                 true
               else
                 false
               end
    end
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "Could not find a space type for #{space_to_check.name}, assuming nonresidential.")
    is_res = false
  end

  return is_res
end

#sidelighting_effective_aperture(primary_sidelighted_area) ⇒ Double

Returns the sidelighting effective aperture sidelighting_effective_aperture = E(window area * window VT) / primary_sidelighted_area

Parameters:

  • primary_sidelighted_area (Double)

    the primary sidelighted area (m^2) of the space

Returns:

  • (Double)

    the unitless sidelighting effective aperture metric



548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 548

def sidelighting_effective_aperture(primary_sidelighted_area)
  # sidelighting_effective_aperture = E(window area * window VT) / primary_sidelighted_area
  sidelighting_effective_aperture = 9999

  num_sub_surfaces = 0

  # Loop through all windows and add up area * VT
  sum_window_area_times_vt = 0
  construction_name_to_vt_map = {}
  surfaces.sort.each do |surface|
    next unless surface.outsideBoundaryCondition == 'Outdoors' && surface.surfaceType == 'Wall'
    surface.subSurfaces.sort.each do |sub_surface|
      next unless sub_surface.outsideBoundaryCondition == 'Outdoors' && (sub_surface.subSurfaceType == 'FixedWindow' || sub_surface.subSurfaceType == 'OperableWindow' || sub_surface.subSurfaceType == 'GlassDoor')

      num_sub_surfaces += 1

      # Get the area
      area_m2 = sub_surface.netArea

      # Get the window construction name
      construction_name = nil
      construction = sub_surface.construction
      if construction.is_initialized
        construction_name = construction.get.name.get.upcase
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "For #{name}, could not determine construction for #{sub_surface.name}, will not be included in  sidelighting_effective_aperture calculation.")
        next
      end

      # Store VT for this construction in map if not already looked up
      if construction_name_to_vt_map[construction_name].nil?

        sql = model.sqlFile

        if sql.is_initialized
          sql = sql.get

          row_query = "SELECT RowName
                      FROM tabulardatawithstrings
                      WHERE ReportName='EnvelopeSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Exterior Fenestration'
                      AND Value='#{construction_name.upcase}'"

          row_id = sql.execAndReturnFirstString(row_query)

          if row_id.is_initialized
            row_id = row_id.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Model', "VT row ID not found for construction: #{construction_name}, #{sub_surface.name} will not be included in  sidelighting_effective_aperture calculation.")
            row_id = 9999
          end

          vt_query = "SELECT Value
                      FROM tabulardatawithstrings
                      WHERE ReportName='EnvelopeSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Exterior Fenestration'
                      AND ColumnName='Glass Visible Transmittance'
                      AND RowName='#{row_id}'"

          vt = sql.execAndReturnFirstDouble(vt_query)

          vt = if vt.is_initialized
                 vt.get
               end

          # Record the VT
          construction_name_to_vt_map[construction_name] = vt

        else
          OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.Space', 'Model has no sql file containing results, cannot lookup data.')
        end

      end

      # Get the VT from the map
      vt = construction_name_to_vt_map[construction_name]
      if vt.nil?
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "For #{name}, could not determine VLT for #{construction_name}, will not be included in sidelighting effective aperture caluclation.")
        vt = 0
      end

      sum_window_area_times_vt += area_m2 * vt
    end
  end

  # Calculate the effective aperture
  if sum_window_area_times_vt.zero?
    sidelighting_effective_aperture = 9999
    if num_sub_surfaces > 0
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "#{name} has no windows where VLT could be determined, sidelighting effective aperture will be higher than it should.")
    end
  else
    sidelighting_effective_aperture = sum_window_area_times_vt / primary_sidelighted_area
  end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.Space', "For #{name} sidelighting effective aperture = #{sidelighting_effective_aperture.round(4)}.")

  return sidelighting_effective_aperture
end

#skylight_effective_aperture(toplighted_area) ⇒ Double

Returns the skylight effective aperture skylight_effective_aperture = E(0.85 * skylight area * skylight VT * WF) / toplighted_area

Parameters:

  • toplighted_area (Double)

    the toplighted area (m^2) of the space

Returns:

  • (Double)

    the unitless skylight effective aperture metric



655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# File 'lib/openstudio-standards/standards/Standards.Space.rb', line 655

def skylight_effective_aperture(toplighted_area)
  # skylight_effective_aperture = E(0.85 * skylight area * skylight VT * WF) / toplighted_area
  skylight_effective_aperture = 0.0

  num_sub_surfaces = 0

  # Assume that well factor (WF) is 0.9 (all wells are less than 2 feet deep)
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.model.Space', 'Assuming that all skylight wells are less than 2 feet deep to calculate skylight effective aperture.')
  wf = 0.9

  # Loop through all windows and add up area * VT
  sum_85pct_times_skylight_area_times_vt_times_wf = 0
  construction_name_to_vt_map = {}
  surfaces.sort.each do |surface|
    next unless surface.outsideBoundaryCondition == 'Outdoors' && surface.surfaceType == 'RoofCeiling'
    surface.subSurfaces.sort.each do |sub_surface|
      next unless sub_surface.outsideBoundaryCondition == 'Outdoors' && sub_surface.subSurfaceType == 'Skylight'

      num_sub_surfaces += 1

      # Get the area
      area_m2 = sub_surface.netArea

      # Get the window construction name
      construction_name = nil
      construction = sub_surface.construction
      if construction.is_initialized
        construction_name = construction.get.name.get.upcase
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "For #{name}, ")
        next
      end

      # Store VT for this construction in map if not already looked up
      if construction_name_to_vt_map[construction_name].nil?

        sql = model.sqlFile

        if sql.is_initialized
          sql = sql.get

          row_query = "SELECT RowName
                      FROM tabulardatawithstrings
                      WHERE ReportName='EnvelopeSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Exterior Fenestration'
                      AND Value='#{construction_name}'"

          row_id = sql.execAndReturnFirstString(row_query)

          if row_id.is_initialized
            row_id = row_id.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Model', "Data not found for query: #{row_query}")
            next
          end

          vt_query = "SELECT Value
                      FROM tabulardatawithstrings
                      WHERE ReportName='EnvelopeSummary'
                      AND ReportForString='Entire Facility'
                      AND TableName='Exterior Fenestration'
                      AND ColumnName='Glass Visible Transmittance'
                      AND RowName='#{row_id}'"

          vt = sql.execAndReturnFirstDouble(vt_query)

          vt = if vt.is_initialized
                 vt.get
               end

          # Record the VT
          construction_name_to_vt_map[construction_name] = vt

        else
          OpenStudio.logFree(OpenStudio::Error, 'openstudio.model.Model', 'Model has no sql file containing results, cannot lookup data.')
        end

      end

      # Get the VT from the map
      vt = construction_name_to_vt_map[construction_name]
      if vt.nil?
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.model.Space', "For #{name}, could not determine VLT for #{construction_name}, will not be included in skylight effective aperture caluclation.")
        vt = 0
      end

      sum_85pct_times_skylight_area_times_vt_times_wf += 0.85 * area_m2 * vt * wf
    end
  end

  # Calculate the effective aperture
  if sum_85pct_times_skylight_area_times_vt_times_wf.zero?
    skylight_effective_aperture = 9999
    if num_sub_surfaces > 0
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.Space', "#{name} has no skylights where VLT could be determined, skylight effective aperture will be higher than it should.")
    end
  else
    skylight_effective_aperture = sum_85pct_times_skylight_area_times_vt_times_wf / toplighted_area
  end

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Space', "#{name} skylight effective aperture = #{skylight_effective_aperture}.")

  return skylight_effective_aperture
end