Class: OpenStudio::Model::PlantLoop

Inherits:
Object
  • Object
show all
Defined in:
lib/openstudio-standards/standards/Standards.PlantLoop.rb,
lib/openstudio-standards/hvac_sizing/Siz.PlantLoop.rb

Overview

open the class to add methods to return sizing values

Instance Method Summary collapse

Instance Method Details

#apply_prm_baseline_pump_power(template) ⇒ Object

TODO: I think it makes more sense to sense the motor efficiency right there… But actually it’s completely irrelevant… you could set at 0.9 and just calculate the pressurise rise to have your 19 W/GPM or whatever



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 41

def apply_prm_baseline_pump_power(template)
  # Determine the pumping power per
  # flow based on loop type.
  pri_w_per_gpm = nil
  sec_w_per_gpm = nil

  sizing_plant = sizingPlant
  loop_type = sizing_plant.loopType

  case loop_type
  when 'Heating'

    has_district_heating = false
    supplyComponents.each do |sc|
      if sc.to_DistrictHeating.is_initialized
        has_district_heating = true
      end
    end

    pri_w_per_gpm = if has_district_heating # District HW
                      14.0
                    else # HW
                      19.0
                    end

  when 'Cooling'

    has_district_cooling = false
    supplyComponents.each do |sc|
      if sc.to_DistrictCooling.is_initialized
        has_district_cooling = true
      end
    end

    has_secondary_pump = false
    demandComponents.each do |sc|
      if sc.to_PumpConstantSpeed.is_initialized || sc.to_PumpVariableSpeed.is_initialized
        has_secondary_pump = true
      end
    end

    if has_district_cooling # District CHW
      pri_w_per_gpm = 16.0
    elsif has_secondary_pump # Primary/secondary CHW
      pri_w_per_gpm = 9.0
      sec_w_per_gpm = 13.0
    else # Primary only CHW
      pri_w_per_gpm = 22.0
    end

  when 'Condenser'

    # TODO: prm condenser loop pump power
    pri_w_per_gpm = 19.0

  end

  # Modify all the primary pumps
  supplyComponents.each do |sc|
    if sc.to_PumpConstantSpeed.is_initialized
      pump = sc.to_PumpConstantSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    elsif sc.to_PumpVariableSpeed.is_initialized
      pump = sc.to_PumpVariableSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    elsif sc.to_HeaderedPumpsConstantSpeed.is_initialized
      pump = sc.to_HeaderedPumpsConstantSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized
      pump = sc.to_HeaderedPumpsVariableSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    end
  end

  # Modify all the secondary pumps
  demandComponents.each do |sc|
    if sc.to_PumpConstantSpeed.is_initialized
      pump = sc.to_PumpConstantSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(sec_w_per_gpm, template)
    elsif sc.to_PumpVariableSpeed.is_initialized
      pump = sc.to_PumpVariableSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(sec_w_per_gpm, template)
    elsif sc.to_HeaderedPumpsConstantSpeed.is_initialized
      pump = sc.to_HeaderedPumpsConstantSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized
      pump = sc.to_HeaderedPumpsVariableSpeed.get
      pump.apply_prm_pressure_rise_and_motor_efficiency(pri_w_per_gpm, template)
    end
  end

  return true
end

#apply_prm_baseline_pumping_type(template) ⇒ Object



654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 654

def apply_prm_baseline_pumping_type(template)
  sizing_plant = sizingPlant
  loop_type = sizing_plant.loopType

  case loop_type
  when 'Heating'

    # Hot water systems

    # Determine the minimum area to determine
    # pumping type.
    minimum_area_ft2 = nil
    case template
    when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'
      minimum_area_ft2 = 120_000
    end

    # Determine the area served
    area_served_m2 = total_floor_area_served
    area_served_ft2 = OpenStudio.convert(area_served_m2, 'm^2', 'ft^2').get

    # Determine the pump type
    control_type = 'Riding Curve'
    if area_served_ft2 > minimum_area_ft2
      control_type = 'VSD No Reset'
    end

    # Modify all the primary pumps
    supplyComponents.each do |sc|
      if sc.to_PumpVariableSpeed.is_initialized
        pump = sc.to_PumpVariableSpeed.get
        pump.set_control_type(control_type)
      end
    end

    # Report out the pumping type
    unless control_type.nil?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, pump type is #{control_type}.")
    end

  when 'Cooling'

    # Chilled water systems

    # Determine the pumping type.
    # For some templates, this is
    # based on area.  For others, it is built
    # on cooling capacity.
    pri_control_type = nil
    sec_control_type = nil
    case template
    when '90.1-2004'

      minimum_area_ft2 = 120_000

      # Determine the area served
      area_served_m2 = total_floor_area_served
      area_served_ft2 = OpenStudio.convert(area_served_m2, 'm^2', 'ft^2').get

      # Determine the primary pump type
      pri_control_type = 'Constant Flow'

      # Determine the secondary pump type
      sec_control_type = 'Riding Curve'
      if area_served_ft2 > minimum_area_ft2
        sec_control_type = 'VSD No Reset'
      end

    when '90.1-2007', '90.1-2010', '90.1-2013'

      minimum_cap_tons = 300

      # Determine the capacity
      cap_w = total_cooling_capacity
      cap_tons = OpenStudio.convert(cap_w, 'W', 'ton').get

      # Determine if it a district cooling system
      has_district_cooling = false
      supplyComponents.each do |sc|
        if sc.to_DistrictCooling.is_initialized
          has_district_cooling = true
        end
      end

      # Determine the primary and secondary pumping types
      pri_control_type = nil
      sec_control_type = nil
      if has_district_cooling
        pri_control_type = if cap_tons > minimum_cap_tons
                             'VSD No Reset'
                           else
                             'Riding Curve'
                           end
      else
        pri_control_type = 'Constant Flow'
        sec_control_type = if cap_tons > minimum_cap_tons
                             'VSD No Reset'
                           else
                             'Riding Curve'
                           end
      end
    end

    # Report out the pumping type
    unless pri_control_type.nil?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, primary pump type is #{pri_control_type}.")
    end

    unless sec_control_type.nil?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, secondary pump type is #{sec_control_type}.")
    end

    # Modify all the primary pumps
    supplyComponents.each do |sc|
      if sc.to_PumpVariableSpeed.is_initialized
        pump = sc.to_PumpVariableSpeed.get
        pump.set_control_type(pri_control_type)
      elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized
        pump = sc.to_HeaderedPumpsVariableSpeed.get
        pump.set_control_type(control_type)        
      end
    end

    # Modify all the secondary pumps
    demandComponents.each do |sc|
      if sc.to_PumpVariableSpeed.is_initialized
        pump = sc.to_PumpVariableSpeed.get
        pump.set_control_type(sec_control_type)
      elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized
        pump = sc.to_HeaderedPumpsVariableSpeed.get
        pump.set_control_type(control_type)
      end
    end

  when 'Condenser'

    # Condenser water systems

    # All condenser water loops are constant flow
    control_type = 'Constant Flow'

    # Report out the pumping type
    unless control_type.nil?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, pump type is #{control_type}.")
    end

    # Modify all primary pumps
    supplyComponents.each do |sc|
      if sc.to_PumpVariableSpeed.is_initialized
        pump = sc.to_PumpVariableSpeed.get
        pump.set_control_type(control_type)
      elsif sc.to_HeaderedPumpsVariableSpeed.is_initialized
        pump = sc.to_HeaderedPumpsVariableSpeed.get
        pump.set_control_type(control_type)
      end
    end

  end

  return true
end

#apply_prm_baseline_temperatures(template) ⇒ Object



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 135

def apply_prm_baseline_temperatures(template)
  sizing_plant = sizingPlant
  loop_type = sizing_plant.loopType
  case loop_type
  when 'Heating'

    # Loop properties
    # G3.1.3.3 - HW Supply at 180F, return at 130F
    hw_temp_f = 180
    hw_delta_t_r = 50
    min_temp_f = 50

    hw_temp_c = OpenStudio.convert(hw_temp_f, 'F', 'C').get
    hw_delta_t_k = OpenStudio.convert(hw_delta_t_r, 'R', 'K').get
    min_temp_c = OpenStudio.convert(min_temp_f, 'F', 'C').get

    sizing_plant.setDesignLoopExitTemperature(hw_temp_c)
    sizing_plant.setLoopDesignTemperatureDifference(hw_delta_t_k)
    setMinimumLoopTemperature(min_temp_c)

    # ASHRAE Appendix G - G3.1.3.4 (for ASHRAE 90.1-2004, 2007 and 2010)
    # HW reset: 180F at 20F and below, 150F at 50F and above
    enable_supply_water_temperature_reset

    # Boiler properties
    supplyComponents.each do |sc|
      if sc.to_BoilerHotWater.is_initialized
        boiler = sc.to_BoilerHotWater.get
        boiler.setDesignWaterOutletTemperature(hw_temp_c)
      end
    end

  when 'Cooling'

    # Loop properties
    # G3.1.3.8 - LWT 44 / EWT 56
    chw_temp_f = 44
    chw_delta_t_r = 12
    min_temp_f = 34
    max_temp_f = 200
    # For water-cooled chillers this is the water temperature entering the condenser (e.g., leaving the cooling tower).
    ref_cond_wtr_temp_f = 85

    chw_temp_c = OpenStudio.convert(chw_temp_f, 'F', 'C').get
    chw_delta_t_k = OpenStudio.convert(chw_delta_t_r, 'R', 'K').get
    min_temp_c = OpenStudio.convert(min_temp_f, 'F', 'C').get
    max_temp_c = OpenStudio.convert(max_temp_f, 'F', 'C').get
    ref_cond_wtr_temp_c = OpenStudio.convert(ref_cond_wtr_temp_f, 'F', 'C').get

    sizing_plant.setDesignLoopExitTemperature(chw_temp_c)
    sizing_plant.setLoopDesignTemperatureDifference(chw_delta_t_k)
    setMinimumLoopTemperature(min_temp_c)
    setMaximumLoopTemperature(max_temp_c)

    # ASHRAE Appendix G - G3.1.3.9 (for ASHRAE 90.1-2004, 2007 and 2010)
    # ChW reset: 44F at 80F and above, 54F at 60F and below
    enable_supply_water_temperature_reset

    # Chiller properties
    supplyComponents.each do |sc|
      if sc.to_ChillerElectricEIR.is_initialized
        chiller = sc.to_ChillerElectricEIR.get
        chiller.setReferenceLeavingChilledWaterTemperature(chw_temp_c)
        chiller.setReferenceEnteringCondenserFluidTemperature(ref_cond_wtr_temp_c)
      end
    end

  when 'Condenser'

    # Much of the thought in this section
    # came from @jmarrec

    # Determine the design OATwb from the design days.
    # Per https://unmethours.com/question/16698/which-cooling-design-day-is-most-common-for-sizing-rooftop-units/
    # the WB=>MDB day is used to size cooling towers.
    summer_oat_wbs_f = []
    model.getDesignDays.each do |dd|
      next unless dd.dayType == 'SummerDesignDay'
      next unless dd.name.get.to_s.include?('WB=>MDB')
      if dd.humidityIndicatingType == 'Wetbulb'
        summer_oat_wb_c = dd.humidityIndicatingConditionsAtMaximumDryBulb
        summer_oat_wbs_f << OpenStudio.convert(summer_oat_wb_c, 'C', 'F').get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{dd.name}, humidity is specified as #{dd.humidityIndicatingType}; cannot determine Twb.")
      end
    end

    # Use the value from the design days or
    # 78F, the CTI rating condition, if no
    # design day information is available.
    design_oat_wb_f = nil
    if summer_oat_wbs_f.size.zero?
      design_oat_wb_f = 78
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{name}, no design day OATwb conditions were found.  CTI rating condition of 78F OATwb will be used for sizing cooling towers.")
    else
      # Take worst case condition
      design_oat_wb_f = summer_oat_wbs_f.max
    end

    # There is an EnergyPlus model limitation
    # that the design_oat_wb_f < 80F
    # for cooling towers
    ep_max_design_oat_wb_f = 80
    if design_oat_wb_f > ep_max_design_oat_wb_f
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{name}, reduced design OATwb from #{design_oat_wb_f} F to E+ model max input of #{ep_max_design_oat_wb_f} F.")
      design_oat_wb_f = ep_max_design_oat_wb_f
    end

    # Determine the design CW temperature, approach, and range
    leaving_cw_t_f = nil
    approach_r = nil
    range_r = nil
    case template
    when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007', '90.1-2010'
      # G3.1.3.11 - CW supply temp = 85F or 10F approaching design wet bulb temperature,
      # whichever is lower.  Design range = 10F
      # Design Temperature rise of 10F => Range: 10F
      range_r = 10

      # Determine the leaving CW temp
      max_leaving_cw_t_f = 85
      leaving_cw_t_10f_approach_f = design_oat_wb_f + 10
      leaving_cw_t_f = [max_leaving_cw_t_f, leaving_cw_t_10f_approach_f].max

      # Calculate the approach
      approach_r = leaving_cw_t_f - design_oat_wb_f

    when '90.1-2013'
      # G3.1.3.11 - CW supply temp shall be evaluated at 0.4% evaporative design OATwb
      # per the formulat approach_F = 25.72 - (0.24 * OATwb_F)
      # 55F <= OATwb <= 90F
      # Design range = 10F.
      range_r = 10

      # Limit the OATwb
      if design_oat_wb_f < 55
        design_oat_wb_f = 55
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, a design OATwb of 55F will be used for sizing the cooling towers because the actual design value is below the limit in G3.1.3.11.")
      elsif design_oat_wb_f > 90
        design_oat_wb_f = 90
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, a design OATwb of 90F will be used for sizing the cooling towers because the actual design value is above the limit in G3.1.3.11.")
      end

      # Calculate the approach
      approach_r = 25.72 - (0.24 * design_oat_wb_f)

      # Calculate the leaving CW temp
      leaving_cw_t_f = design_oat_wb_f + approach_r

    end

    # Report out design conditions
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, design OATwb = #{design_oat_wb_f.round(1)} F, approach = #{approach_r.round(1)} deltaF, range = #{range_r.round(1)} deltaF, leaving condenser water temperature = #{leaving_cw_t_f.round(1)} F.")

    # Convert to SI units
    leaving_cw_t_c = OpenStudio.convert(leaving_cw_t_f, 'F', 'C').get
    approach_k = OpenStudio.convert(approach_r, 'R', 'K').get
    range_k = OpenStudio.convert(range_r, 'R', 'K').get
    design_oat_wb_c = OpenStudio.convert(design_oat_wb_f, 'F', 'C').get

    # Set the CW sizing parameters
    sizing_plant.setDesignLoopExitTemperature(leaving_cw_t_c)
    sizing_plant.setLoopDesignTemperatureDifference(range_k)

    # Set Cooling Tower sizing parameters.
    # Only the variable speed cooling tower
    # in E+ allows you to set the design temperatures.
    #
    # Per the documentation
    # http://bigladdersoftware.com/epx/docs/8-4/input-output-reference/group-condenser-equipment.html#field-design-u-factor-times-area-value
    # for CoolingTowerSingleSpeed and CoolingTowerTwoSpeed
    # E+ uses the following values during sizing:
    # 95F entering water temp
    # 95F OATdb
    # 78F OATwb
    # range = loop design delta-T aka range (specified above)
    supplyComponents.each do |sc|
      if sc.to_CoolingTowerVariableSpeed.is_initialized
        ct = sc.to_CoolingTowerVariableSpeed.get
        # E+ has a minimum limit of 68F (20C) for this field.
        # Check against limit before attempting to set value.
        eplus_design_oat_wb_c_lim = 20
        if design_oat_wb_c < eplus_design_oat_wb_c_lim
          OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, a design OATwb of 68F will be used for sizing the cooling towers because the actual design value is below the limit EnergyPlus accepts for this input.")
          design_oat_wb_c = eplus_design_oat_wb_c_lim
        end
        ct.setDesignInletAirWetBulbTemperature(design_oat_wb_c)
        ct.setDesignApproachTemperature(approach_k)
        ct.setDesignRangeTemperature(range_k)
      end
    end

    # Set the min and max CW temps
    # Typical design of min temp is really around 40F
    # (that's what basin heaters, when used, are sized for usually)
    min_temp_f = 34
    max_temp_f = 200
    min_temp_c = OpenStudio.convert(min_temp_f, 'F', 'C').get
    max_temp_c = OpenStudio.convert(max_temp_f, 'F', 'C').get
    setMinimumLoopTemperature(min_temp_c)
    setMaximumLoopTemperature(max_temp_c)

    # Cooling Tower operational controls
    # G3.1.3.11 - Tower shall be controlled to maintain a 70F
    # LCnWT where weather permits,
    # floating up to leaving water at design conditions.
    float_down_to_f = 70
    float_down_to_c = OpenStudio.convert(float_down_to_f, 'F', 'C').get
    cw_t_stpt_manager = OpenStudio::Model::SetpointManagerFollowOutdoorAirTemperature.new(model)
    cw_t_stpt_manager.setName("CW Temp Follows OATwb w/ #{approach_r} deltaF approach min #{float_down_to_f.round(1)} F to max #{leaving_cw_t_f.round(1)}")
    cw_t_stpt_manager.setReferenceTemperatureType('OutdoorAirWetBulb')
    # At low design OATwb, it is possible to calculate
    # a maximum temperature below the minimum.  In this case,
    # make the maximum and minimum the same.
    if leaving_cw_t_c < float_down_to_c
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{name}, the maximum leaving temperature of #{leaving_cw_t_f.round(1)} F is below the minimum of #{float_down_to_f.round(1)} F.  The maximum will be set to the same value as the minimum.")
      leaving_cw_t_c = float_down_to_c
    end
    cw_t_stpt_manager.setMaximumSetpointTemperature(leaving_cw_t_c)
    cw_t_stpt_manager.setMinimumSetpointTemperature(float_down_to_c)
    cw_t_stpt_manager.setOffsetTemperatureDifference(approach_k)
    cw_t_stpt_manager.addToNode(supplyOutletNode)

  end

  return true
end

#apply_prm_number_of_boilers(template) ⇒ Object



816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 816

def apply_prm_number_of_boilers(template)
  # Skip non-heating plants
  return true unless sizingPlant.loopType == 'Heating'

  # Determine the minimum area to determine
  # number of boilers.
  minimum_area_ft2 = nil
  case template
  when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'
    minimum_area_ft2 = 15_000
  end

  # Determine the area served
  area_served_m2 = total_floor_area_served
  area_served_ft2 = OpenStudio.convert(area_served_m2, 'm^2', 'ft^2').get

  # Do nothing if only one boiler is required
  return true if area_served_ft2 < minimum_area_ft2

  # Get all existing boilers
  boilers = []
  supplyComponents.each do |sc|
    if sc.to_BoilerHotWater.is_initialized
      boilers << sc.to_BoilerHotWater.get
    end
  end

  # Ensure there is only 1 boiler to start
  first_boiler = nil
  if boilers.size.zero?
    return true
  elsif boilers.size > 1
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{boilers.size}, cannot split up per performance rating method baseline requirements.")
  else
    first_boiler = boilers[0]
  end

  # Clone the existing boiler and create
  # a new branch for it
  second_boiler = first_boiler.clone(model)
  if second_boiler.to_BoilerHotWater.is_initialized
    second_boiler = second_boiler.to_BoilerHotWater.get
  else
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, could not clone boiler #{first_boiler.name}, cannot apply the performance rating method number of boilers.")
    return false
  end
  addSupplyBranchForComponent(second_boiler)
  final_boilers = [first_boiler, second_boiler]
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, added a second boiler.")

  # Set the sizing factor for all boilers evenly and Rename the boilers
  sizing_factor = (1.0 / final_boilers.size).round(2)
  final_boilers.each_with_index do |boiler, i|
    boiler.setSizingFactor(sizing_factor)
    boiler.setName("#{first_boiler.name} #{i + 1} of #{final_boilers.size}")
  end

  # Set the equipment to stage sequentially
  setLoadDistributionScheme('SequentialLoad')

  return true
end

#apply_prm_number_of_chillers(template) ⇒ Object



879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 879

def apply_prm_number_of_chillers(template)
  # Skip non-cooling plants
  return true unless sizingPlant.loopType == 'Cooling'

  # Determine the number and type of chillers
  num_chillers = nil
  chiller_cooling_type = nil
  chiller_compressor_type = nil
  case template
  when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'

    # Determine the capacity of the loop
    cap_w = total_cooling_capacity
    cap_tons = OpenStudio.convert(cap_w, 'W', 'ton').get

    if cap_tons <= 300
      num_chillers = 1
      chiller_cooling_type = 'WaterCooled'
      chiller_compressor_type = 'Rotary Screw'
    elsif cap_tons > 300 && cap_tons < 600
      num_chillers = 2
      chiller_cooling_type = 'WaterCooled'
      chiller_compressor_type = 'Rotary Screw'
    else
      # Max capacity of a single chiller
      max_cap_ton = 800.0
      num_chillers = (cap_tons / max_cap_ton).floor + 1
      # Must be at least 2 chillers
      num_chillers += 1 if num_chillers == 1
      chiller_cooling_type = 'WaterCooled'
      chiller_compressor_type = 'Centrifugal'
    end

  end

  # Get all existing chillers and pumps
  chillers = []
  pumps = []
  supplyComponents.each do |sc|
    if sc.to_ChillerElectricEIR.is_initialized
      chillers << sc.to_ChillerElectricEIR.get
    elsif sc.to_PumpConstantSpeed.is_initialized
      pumps << sc.to_PumpConstantSpeed.get
    elsif sc.to_PumpVariableSpeed.is_initialized
      pumps << sc.to_PumpVariableSpeed.get
    end
  end

  # Ensure there is only 1 chiller to start
  first_chiller = nil
  if chillers.size.zero?
    return true
  elsif chillers.size > 1
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{chillers.size} chillers, cannot split up per performance rating method baseline requirements.")
  else
    first_chiller = chillers[0]
  end

  # Ensure there is only 1 pump to start
  orig_pump = nil
  if pumps.size.zero?
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{pumps.size} pumps.  A loop must have at least one pump.")
    return false
  elsif pumps.size > 1
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{pumps.size} pumps, cannot split up per performance rating method baseline requirements.")
    return false
  else
    orig_pump = pumps[0]
  end

  # Determine the per-chiller capacity
  # and sizing factor
  per_chiller_sizing_factor = (1.0 / num_chillers).round(2)
  # This is unused
  per_chiller_cap_tons = cap_tons / num_chillers

  # Set the sizing factor and the chiller type: could do it on the first chiller before cloning it, but renaming warrants looping on chillers anyways

  # Add any new chillers
  final_chillers = [first_chiller]
  (num_chillers - 1).times do
    new_chiller = first_chiller.clone(model)
    if new_chiller.to_ChillerElectricEIR.is_initialized
      new_chiller = new_chiller.to_ChillerElectricEIR.get
    else
      OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, could not clone chiller #{first_chiller.name}, cannot apply the performance rating method number of chillers.")
      return false
    end
    # Connect the new chiller to the same CHW loop
    # as the old chiller.
    addSupplyBranchForComponent(new_chiller)
    # Connect the new chiller to the same CW loop
    # as the old chiller, if it was water-cooled.
    cw_loop = first_chiller.secondaryPlantLoop
    if cw_loop.is_initialized
      cw_loop.get.addDemandBranchForComponent(new_chiller)
    end

    final_chillers << new_chiller
  end

  # If there is more than one cooling tower,
  # replace the original pump with a headered pump
  # of the same type and properties.
  if final_chillers.size > 1
    num_pumps = final_chillers.size
    new_pump = nil
    if orig_pump.to_PumpConstantSpeed.is_initialized
      new_pump = OpenStudio::Model::HeaderedPumpsConstantSpeed.new(model)
      new_pump.setNumberofPumpsinBank(num_pumps)
      new_pump.setName("#{orig_pump.name} Bank of #{num_pumps}")
      new_pump.setRatedPumpHead(orig_pump.ratedPumpHead)
      new_pump.setMotorEfficiency(orig_pump.motorEfficiency)
      new_pump.setFractionofMotorInefficienciestoFluidStream(orig_pump.fractionofMotorInefficienciestoFluidStream)
      new_pump.setPumpControlType(orig_pump.pumpControlType)
    elsif orig_pump.to_PumpVariableSpeed.is_initialized
      new_pump = OpenStudio::Model::HeaderedPumpsVariableSpeed.new(model)
      new_pump.setNumberofPumpsinBank(num_pumps)
      new_pump.setName("#{orig_pump.name} Bank of #{num_pumps}")
      new_pump.setRatedPumpHead(orig_pump.ratedPumpHead)
      new_pump.setMotorEfficiency(orig_pump.motorEfficiency)
      new_pump.setFractionofMotorInefficienciestoFluidStream(orig_pump.fractionofMotorInefficienciestoFluidStream)
      new_pump.setPumpControlType(orig_pump.pumpControlType)
      new_pump.setCoefficient1ofthePartLoadPerformanceCurve(orig_pump.coefficient1ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient2ofthePartLoadPerformanceCurve(orig_pump.coefficient2ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient3ofthePartLoadPerformanceCurve(orig_pump.coefficient3ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient4ofthePartLoadPerformanceCurve(orig_pump.coefficient4ofthePartLoadPerformanceCurve)
    end
    # Remove the old pump
    orig_pump.remove
    # Attach the new headered pumps
    new_pump.addToNode(supplyInletNode)
  end

  # Set the sizing factor and the chiller types
  final_chillers.each_with_index do |final_chiller, i|
    final_chiller.setName("#{template} #{chiller_cooling_type} #{chiller_compressor_type} Chiller #{i + 1} of #{final_chillers.size}")
    final_chiller.setSizingFactor(per_chiller_sizing_factor)
    final_chiller.setCondenserType(chiller_cooling_type)
  end
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, there are #{final_chillers.size} #{chiller_cooling_type} #{chiller_compressor_type} chillers.")

  # Set the equipment to stage sequentially
  setLoadDistributionScheme('SequentialLoad')

  return true
end

#apply_prm_number_of_cooling_towers(template) ⇒ Object



1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 1027

def apply_prm_number_of_cooling_towers(template)
  # Skip non-cooling plants
  return true unless sizingPlant.loopType == 'Condenser'

  # Determine the number of chillers
  # already in the model
  num_chillers = model.getChillerElectricEIRs.size

  # Get all existing cooling towers and pumps
  clg_twrs = []
  pumps = []
  supplyComponents.each do |sc|
    if sc.to_CoolingTowerSingleSpeed.is_initialized
      clg_twrs << sc.to_CoolingTowerSingleSpeed.get
    elsif sc.to_CoolingTowerTwoSpeed.is_initialized
      clg_twrs << sc.to_CoolingTowerTwoSpeed.get
    elsif sc.to_CoolingTowerVariableSpeed.is_initialized
      clg_twrs << sc.to_CoolingTowerVariableSpeed.get
    elsif sc.to_PumpConstantSpeed.is_initialized
      pumps << sc.to_PumpConstantSpeed.get
    elsif sc.to_PumpVariableSpeed.is_initialized
      pumps << sc.to_PumpVariableSpeed.get
    end
  end

  # Ensure there is only 1 cooling tower to start
  orig_twr = nil
  if clg_twrs.size.zero?
    return true
  elsif clg_twrs.size > 1
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{clg_twrs.size} cooling towers, cannot split up per performance rating method baseline requirements.")
    return false
  else
    orig_twr = clg_twrs[0]
  end

  # Ensure there is only 1 pump to start
  orig_pump = nil
  if pumps.size.zero?
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{pumps.size} pumps.  A loop must have at least one pump.")
    return false
  elsif pumps.size > 1
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, found #{pumps.size} pumps, cannot split up per performance rating method baseline requirements.")
    return false
  else
    orig_pump = pumps[0]
  end

  # Determine the per-cooling_tower sizing factor
  clg_twr_sizing_factor = (1.0 / num_chillers).round(2)

  # Add a cooling tower for each chiller.
  # Add an accompanying CW pump for each cooling tower.
  final_twrs = [orig_twr]
  new_twr = nil
  (num_chillers - 1).times do
    if orig_twr.to_CoolingTowerSingleSpeed.is_initialized
      new_twr = orig_twr.clone(model)
      new_twr = new_twr.to_CoolingTowerSingleSpeed.get
    elsif orig_twr.to_CoolingTowerTwoSpeed.is_initialized
      new_twr = orig_twr.clone(model)
      new_twr = new_twr.to_CoolingTowerTwoSpeed.get
    elsif orig_twr.to_CoolingTowerVariableSpeed.is_initialized
      # TODO: remove workaround after resolving
      # https://github.com/NREL/OpenStudio/issues/2212
      # Workaround is to create a new tower
      # and replicate all the properties of the first tower.
      new_twr = OpenStudio::Model::CoolingTowerVariableSpeed.new(model)
      new_twr.setName(orig_twr.name.get.to_s)
      new_twr.setDesignInletAirWetBulbTemperature(orig_twr.designInletAirWetBulbTemperature.get)
      new_twr.setDesignApproachTemperature(orig_twr.designApproachTemperature.get)
      new_twr.setDesignRangeTemperature(orig_twr.designRangeTemperature.get)
      new_twr.setFractionofTowerCapacityinFreeConvectionRegime(orig_twr.fractionofTowerCapacityinFreeConvectionRegime.get)
      if orig_twr.fanPowerRatioFunctionofAirFlowRateRatioCurve.is_initialized
        new_twr.setFanPowerRatioFunctionofAirFlowRateRatioCurve(orig_twr.fanPowerRatioFunctionofAirFlowRateRatioCurve.get)
      end
    else
      OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}, could not clone cooling tower #{orig_twr.name}, cannot apply the performance rating method number of cooling towers.")
      return false
    end

    # Connect the new cooling tower to the CW loop
    addSupplyBranchForComponent(new_twr)
    new_twr_inlet = new_twr.inletModelObject.get.to_Node.get

    final_twrs << new_twr
  end

  # If there is more than one cooling tower,
  # replace the original pump with a headered pump
  # of the same type and properties.
  if final_twrs.size > 1
    num_pumps = final_twrs.size
    new_pump = nil
    if orig_pump.to_PumpConstantSpeed.is_initialized
      new_pump = OpenStudio::Model::HeaderedPumpsConstantSpeed.new(model)
      new_pump.setNumberofPumpsinBank(num_pumps)
      new_pump.setName("#{orig_pump.name} Bank of #{num_pumps}")
      new_pump.setRatedPumpHead(orig_pump.ratedPumpHead)
      new_pump.setMotorEfficiency(orig_pump.motorEfficiency)
      new_pump.setFractionofMotorInefficienciestoFluidStream(orig_pump.fractionofMotorInefficienciestoFluidStream)
      new_pump.setPumpControlType(orig_pump.pumpControlType)
    elsif orig_pump.to_PumpVariableSpeed.is_initialized
      new_pump = OpenStudio::Model::HeaderedPumpsVariableSpeed.new(model)
      new_pump.setNumberofPumpsinBank(num_pumps)
      new_pump.setName("#{orig_pump.name} Bank of #{num_pumps}")
      new_pump.setRatedPumpHead(orig_pump.ratedPumpHead)
      new_pump.setMotorEfficiency(orig_pump.motorEfficiency)
      new_pump.setFractionofMotorInefficienciestoFluidStream(orig_pump.fractionofMotorInefficienciestoFluidStream)
      new_pump.setPumpControlType(orig_pump.pumpControlType)
      new_pump.setCoefficient1ofthePartLoadPerformanceCurve(orig_pump.coefficient1ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient2ofthePartLoadPerformanceCurve(orig_pump.coefficient2ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient3ofthePartLoadPerformanceCurve(orig_pump.coefficient3ofthePartLoadPerformanceCurve)
      new_pump.setCoefficient4ofthePartLoadPerformanceCurve(orig_pump.coefficient4ofthePartLoadPerformanceCurve)
    end
    # Remove the old pump
    orig_pump.remove
    # Attach the new headered pumps
    new_pump.addToNode(supplyInletNode)
  end

  # Set the sizing factors
  final_twrs.each_with_index do |final_cooling_tower, i|
    final_cooling_tower.setName("#{final_cooling_tower.name} #{i + 1} of #{final_twrs.size}")      
    final_cooling_tower.setSizingFactor(clg_twr_sizing_factor)
  end
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}, there are #{final_twrs.size} cooling towers, one for each chiller.")

  # Set the equipment to stage sequentially
  setLoadDistributionScheme('SequentialLoad')
end

#apply_standard_controls(template, climate_zone) ⇒ Bool

Apply all standard required controls to the plantloop

Returns:

  • (Bool)

    returns true if successful, false if not



8
9
10
11
12
13
14
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 8

def apply_standard_controls(template, climate_zone)
  # Variable flow system
  enable_variable_flow(template) if is_variable_flow_required(template)

  # Supply water temperature reset
  enable_supply_water_temperature_reset if supply_water_temperature_reset_required?(template)
end

#applySizingValuesObject

Takes the values calculated by the EnergyPlus sizing routines and puts them into this object model in place of the autosized fields. Must have previously completed a run with sql output for this to work.



13
14
15
16
17
18
19
20
21
22
23
24
25
# File 'lib/openstudio-standards/hvac_sizing/Siz.PlantLoop.rb', line 13

def applySizingValues

  maximum_loop_flow_rate = self.autosizedMaximumLoopFlowRate
  if maximum_loop_flow_rate.is_initialized
    self.setMaximumLoopFlowRate(maximum_loop_flow_rate.get) 
  end

  plant_loop_volume = self.autosizedPlantLoopVolume
  if plant_loop_volume.is_initialized
    self.setPlantLoopVolume(plant_loop_volume.get) 
  end
  
end

#autosizeObject

Sets all auto-sizeable fields to autosize



6
7
8
# File 'lib/openstudio-standards/hvac_sizing/Siz.PlantLoop.rb', line 6

def autosize
  OpenStudio::logFree(OpenStudio::Warn, "openstudio.sizing.PlantLoop", ".autosize not yet implemented for #{self.iddObject.type.valueDescription}.")
end

#autosizedMaximumLoopFlowRateObject

returns the autosized maximum loop flow rate as an optional double



28
29
30
31
32
# File 'lib/openstudio-standards/hvac_sizing/Siz.PlantLoop.rb', line 28

def autosizedMaximumLoopFlowRate

  return self.model.getAutosizedValue(self, 'Maximum Loop Flow Rate', 'm3/s')
  
end

#autosizedPlantLoopVolumeObject

returns the autosized plant loop volume as an optional double



35
36
37
38
39
# File 'lib/openstudio-standards/hvac_sizing/Siz.PlantLoop.rb', line 35

def autosizedPlantLoopVolume

  return self.model.getAutosizedValue(self, 'Plant Loop Volume', 'm3')
  
end

#enable_supply_water_temperature_resetObject



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 410

def enable_supply_water_temperature_reset
  # Get the current setpoint manager on the outlet node
  # and determine if already has temperature reset
  spms = supplyOutletNode.setpointManagers
  spms.each do |spm|
    if spm.to_SetpointManagerOutdoorAirReset.is_initialized
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset is already enabled.")
      return false
    end
  end

  # Get the design water temperature
  sizing_plant = sizingPlant
  design_temp_c = sizing_plant.designLoopExitTemperature
  design_temp_f = OpenStudio.convert(design_temp_c, 'C', 'F').get
  loop_type = sizing_plant.loopType

  # Apply the reset, depending on the type of loop.
  case loop_type
  when 'Heating'

    # Hot water as-designed when cold outside
    hwt_at_lo_oat_f = design_temp_f
    hwt_at_lo_oat_c = OpenStudio.convert(hwt_at_lo_oat_f, 'F', 'C').get
    # 30F decrease when it's hot outside,
    # and therefore less heating capacity is likely required.
    decrease_f = 30.0
    hwt_at_hi_oat_f = hwt_at_lo_oat_f - decrease_f
    hwt_at_hi_oat_c = OpenStudio.convert(hwt_at_hi_oat_f, 'F', 'C').get

    # Define the high and low outdoor air temperatures
    lo_oat_f = 20
    lo_oat_c = OpenStudio.convert(lo_oat_f, 'F', 'C').get
    hi_oat_f = 50
    hi_oat_c = OpenStudio.convert(hi_oat_f, 'F', 'C').get

    # Create a setpoint manager
    hwt_oa_reset = OpenStudio::Model::SetpointManagerOutdoorAirReset.new(model)
    hwt_oa_reset.setName("#{name} HW Temp Reset")
    hwt_oa_reset.setControlVariable('Temperature')
    hwt_oa_reset.setSetpointatOutdoorLowTemperature(hwt_at_lo_oat_c)
    hwt_oa_reset.setOutdoorLowTemperature(lo_oat_c)
    hwt_oa_reset.setSetpointatOutdoorHighTemperature(hwt_at_hi_oat_c)
    hwt_oa_reset.setOutdoorHighTemperature(hi_oat_c)
    hwt_oa_reset.addToNode(supplyOutletNode)

    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: hot water temperature reset from #{hwt_at_lo_oat_f.round}F to #{hwt_at_hi_oat_f.round}F between outdoor air temps of #{lo_oat_f.round}F and #{hi_oat_f.round}F.")

  when 'Cooling'

    # Chilled water as-designed when hot outside
    chwt_at_hi_oat_f = design_temp_f
    chwt_at_hi_oat_c = OpenStudio.convert(chwt_at_hi_oat_f, 'F', 'C').get
    # 10F increase when it's cold outside,
    # and therefore less cooling capacity is likely required.
    increase_f = 10.0
    chwt_at_lo_oat_f = chwt_at_hi_oat_f + increase_f
    chwt_at_lo_oat_c = OpenStudio.convert(chwt_at_lo_oat_f, 'F', 'C').get

    # Define the high and low outdoor air temperatures
    lo_oat_f = 60
    lo_oat_c = OpenStudio.convert(lo_oat_f, 'F', 'C').get
    hi_oat_f = 80
    hi_oat_c = OpenStudio.convert(hi_oat_f, 'F', 'C').get

    # Create a setpoint manager
    chwt_oa_reset = OpenStudio::Model::SetpointManagerOutdoorAirReset.new(model)
    chwt_oa_reset.setName("#{name} CHW Temp Reset")
    chwt_oa_reset.setControlVariable('Temperature')
    chwt_oa_reset.setSetpointatOutdoorLowTemperature(chwt_at_lo_oat_c)
    chwt_oa_reset.setOutdoorLowTemperature(lo_oat_c)
    chwt_oa_reset.setSetpointatOutdoorHighTemperature(chwt_at_hi_oat_c)
    chwt_oa_reset.setOutdoorHighTemperature(hi_oat_c)
    chwt_oa_reset.addToNode(supplyOutletNode)

    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: chilled water temperature reset from #{chwt_at_hi_oat_f.round}F to #{chwt_at_lo_oat_f.round}F between outdoor air temps of #{hi_oat_f.round}F and #{lo_oat_f.round}F.")

  else

    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.PlantLoop', "For #{name}: cannot enable supply water temperature reset for a #{loop_type} loop.")
    return false

  end

  return true
end

#enable_variable_flow(template) ⇒ Object



16
17
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 16

def enable_variable_flow(template)
end

#find_maximum_loop_flow_rateDouble

find maximum_loop_flow_rate

Returns:

  • (Double)

    maximum_loop_flow_rate m^3/s



1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 1212

def find_maximum_loop_flow_rate
  # Get the maximum_loop_flow_rate
  maximum_loop_flow_rate = nil
  if maximumLoopFlowRate.is_initialized
    maximum_loop_flow_rate = maximumLoopFlowRate.get
  elsif autosizedMaximumLoopFlowRate.is_initialized
    maximum_loop_flow_rate = autosizedMaximumLoopFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{name} maximum loop flow rate is not available.")
  end

  return maximum_loop_flow_rate
end

#supply_water_temperature_reset_required?(template) ⇒ Boolean

Returns:

  • (Boolean)


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 363

def supply_water_temperature_reset_required?(template)
  reset_required = false

  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'

    # Not required before 90.1-2004
    return reset_required

  when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'

    # Not required for service water heating systems
    if swh_loop?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset not required for service water heating systems.")
      return reset_required
    end

    # Not required for variable flow systems
    if variable_flow_system?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset not required for variable flow systems per 6.5.4.3 Exception b.")
      return reset_required
    end

    # Determine the capacity of the system
    heating_capacity_w = total_heating_capacity
    cooling_capacity_w = total_cooling_capacity

    heating_capacity_btu_per_hr = OpenStudio.convert(heating_capacity_w, 'W', 'Btu/hr').get
    cooling_capacity_btu_per_hr = OpenStudio.convert(cooling_capacity_w, 'W', 'Btu/hr').get

    # Compare against capacity minimum requirement
    min_cap_btu_per_hr = 300_000
    if heating_capacity_btu_per_hr > min_cap_btu_per_hr
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset is required because heating capacity of #{heating_capacity_btu_per_hr.round} Btu/hr exceeds the minimum threshold of #{min_cap_btu_per_hr.round} Btu/hr.")
      reset_required = true
    elsif cooling_capacity_btu_per_hr > min_cap_btu_per_hr
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset is required because cooling capacity of #{cooling_capacity_btu_per_hr.round} Btu/hr exceeds the minimum threshold of #{min_cap_btu_per_hr.round} Btu/hr.")
      reset_required = true
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{name}: supply water temperature reset is not required because capacity is less than minimum of #{min_cap_btu_per_hr.round} Btu/hr.")
    end

  end

  return reset_required
end

#swh_loop?Boolean

Determines if the loop is a Service Water Heating loop by checking if there is a WaterUseConnection on the demand side

Returns:

  • (Boolean)

    true if it’s indeed a SHW loop, false otherwise



1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 1229

def swh_loop?()

  serves_swh = false
  self.demandComponents.each do |comp|
    if comp.to_WaterUseConnections.is_initialized
      serves_swh = true
      break
    end
  end

  return serves_swh
end

#swh_system_typeArray<Array<String>, Bool, Double, Double>

Classifies the service water system and returns information about fuel types, whether it serves both heating and service water heating, the water storage volume, and the total heating capacity.

fuel types, combination_system (true/false), storage_capacity (m^3), total_heating_capacity (W)

Returns:

  • (Array<Array<String>, Bool, Double, Double>)

    An array of:



1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 1248

def swh_system_type
  combination_system = true
  storage_capacity = 0
  primary_fuels = []
  secondary_fuels = []

  # @Todo: to work correctly, plantloop.total_heating_capacity requires to have either hardsized capacities or a sizing run.
  primary_heating_capacity = total_heating_capacity
  secondary_heating_capacity = 0

  supplyComponents.each do |component|

    # Get the object type
    obj_type = component.iddObjectType.valueName.to_s

    case obj_type
    when 'OS_DistrictHeating'
      primary_fuels << 'DistrictHeating'
      combination_system = false
    when 'OS_HeatPump_WaterToWater_EquationFit_Heating'
      primary_fuels << 'Electricity'
    when 'OS_SolarCollector_FlatPlate_PhotovoltaicThermal'
      primary_fuels << 'SolarEnergy'
    when 'OS_SolarCollector_FlatPlate_Water'
      primary_fuels << 'SolarEnergy'
    when 'OS_SolarCollector_IntegralCollectorStorage'
      primary_fuels << 'SolarEnergy'
    when 'OS_WaterHeater_HeatPump'
      primary_fuels << 'Electricity'
    when 'OS_WaterHeater_Mixed'
      component = component.to_WaterHeaterMixed.get
      # Check it it's actually a heater, not just a storage tank
      if component.heaterMaximumCapacity.empty? || component.heaterMaximumCapacity.get != 0
        # If it does, we add the heater Fuel Type
        primary_fuels << component.heaterFuelType
        # And in this case we'll reuse this object
        combination_system = false
      end  # @Todo: not sure about whether it should be an elsif or not
      # Check the plant loop connection on the source side
      if component.secondaryPlantLoop.is_initialized
        source_plant_loop = component.secondaryPlantLoop.get
        secondary_fuels += model.plant_loop_heating_fuels(source_plant_loop)
        secondary_heating_capacity += source_plant_loop.total_heating_capacity
      end

      # Storage capacity
      if component.tankVolume.is_initialized
        storage_capacity = component.tankVolume.get
      end

    when 'OS_WaterHeater_Stratified'
      component = component.to_WaterHeaterStratified.get

      # Check if the heater actually has a capacity (otherwise it's simply a Storage Tank)
      if component.heaterMaximumCapacity.empty? || component.heaterMaximumCapacity.get != 0
        # If it does, we add the heater Fuel Type
        primary_fuels << component.heaterFuelType
        # And in this case we'll reuse this object
        combination_system = false
      end # @Todo: not sure about whether it should be an elsif or not
      # Check the plant loop connection on the source side
      if component.secondaryPlantLoop.is_initialized
        source_plant_loop = component.secondaryPlantLoop.get
        secondary_fuels += model.plant_loop_heating_fuels(source_plant_loop)
        secondary_heating_capacity += source_plant_loop.total_heating_capacity
      end

      # Storage capacity
      if component.tankVolume.is_initialized
        storage_capacity = component.tankVolume.get
      end

    when 'OS_HeatExchanger_FluidToFluid'
      hx = component.to_HeatExchangerFluidToFluid.get
      cooling_hx_control_types = ["CoolingSetpointModulated", "CoolingSetpointOnOff", "CoolingDifferentialOnOff", "CoolingSetpointOnOffWithComponentOverride"]
      cooling_hx_control_types.each {|x| x.downcase!}
      if !cooling_hx_control_types.include?(hx.controlType.downcase) && hx.secondaryPlantLoop.is_initialized
        source_plant_loop = hx.secondaryPlantLoop.get
        secondary_fuels += model.plant_loop_heating_fuels(source_plant_loop)
        secondary_heating_capacity += source_plant_loop.total_heating_capacity
      end

    when 'OS_Node', 'OS_Pump_ConstantSpeed', 'OS_Pump_VariableSpeed', 'OS_Connector_Splitter', 'OS_Connector_Mixer', 'OS_Pipe_Adiabatic'
      # To avoid extraneous debug messages
    else
      #OpenStudio::logFree(OpenStudio::Debug, 'openstudio.sizing.Model', "No heating fuel types found for #{obj_type}")
    end

  end

  # @Todo: decide how to handle primary and secondary stuff
  fuels = primary_fuels + secondary_fuels
  total_heating_capacity = primary_heating_capacity + secondary_heating_capacity
  # If the primary heating capacity is bigger than secondary, assume the secondary is just a backup and disregard it?
  # if primary_heating_capacity > secondary_heating_capacity
  #   total_heating_capacity = primary_heating_capacity
  #   fuels = primary_fuels
  # end

  return fuels.uniq.sort, combination_system, storage_capacity, total_heating_capacity

end

#total_cooling_capacityDouble

Get the total cooling capacity for the plant loop

Returns:

  • (Double)

    total cooling capacity units = Watts (W)



501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 501

def total_cooling_capacity
  # Sum the cooling capacity for all cooling components
  # on the plant loop.
  total_cooling_capacity_w = 0
  supplyComponents.each do |sc|
    # ChillerElectricEIR
    if sc.to_ChillerElectricEIR.is_initialized
      chiller = sc.to_ChillerElectricEIR.get
      if chiller.referenceCapacity.is_initialized
        total_cooling_capacity_w += chiller.referenceCapacity.get
      elsif chiller.autosizedReferenceCapacity.is_initialized
        total_cooling_capacity_w += chiller.autosizedReferenceCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{chiller.name} is not available, total cooling capacity of plant loop will be incorrect when applying standard.")
      end
    # DistrictCooling
    elsif sc.to_DistrictCooling.is_initialized
      dist_clg = sc.to_DistrictCooling.get
      if dist_clg.nominalCapacity.is_initialized
        total_cooling_capacity_w += dist_clg.nominalCapacity.get
      elsif dist_clg.autosizedNominalCapacity.is_initialized
        total_cooling_capacity_w += dist_clg.autosizedNominalCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{self.name} capacity of DistrictCooling #{dist_clg.name} is not available, total heating capacity of plant loop will be incorrect when applying standard.")
      end
    end
  end

  total_cooling_capacity_tons = OpenStudio.convert(total_cooling_capacity_w, 'W', 'ton').get
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, cooling capacity is #{total_cooling_capacity_tons.round} tons of refrigeration.")

  return total_cooling_capacity_w
end

#total_floor_area_servedObject



593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 593

def total_floor_area_served
  sizing_plant = sizingPlant
  loop_type = sizing_plant.loopType

  # Get all the coils served by this loop
  coils = []
  case loop_type
  when 'Heating'
    demandComponents.each do |dc|
      if dc.to_CoilHeatingWater.is_initialized
        coils << dc.to_CoilHeatingWater.get
      end
    end
  when 'Cooling'
    demandComponents.each do |dc|
      if dc.to_CoilCoolingWater.is_initialized
        coils << dc.to_CoilCoolingWater.get
      end
    end
  else
    return 0.0
  end

  # The coil can either be on an airloop (as a main heating coil)
  # in an HVAC Component (like a unitary system on an airloop),
  # or in a Zone HVAC Component (like a fan coil).
  zones_served = []
  coils.each do |coil|
    if coil.airLoopHVAC.is_initialized
      air_loop = coil.airLoopHVAC.get
      zones_served += air_loop.thermalZones
    elsif coil.containingHVACComponent.is_initialized
      containing_comp = coil.containingHVACComponent.get
      if containing_comp.airLoopHVAC.is_initialized
        air_loop = containing_comp.airLoopHVAC.get
        zones_served += air_loop.thermalZones
      end
    elsif coil.containingZoneHVACComponent.is_initialized
      zone_hvac = coil.containingZoneHVACComponent.get
      if zone_hvac.thermalZone.is_initialized
        zones_served << zone_hvac.thermalZone.get
      end
    end
  end

  # Add up the area of all zones served.
  # Make sure to only add unique zones in
  # case the same zone is served by multiple
  # coils served by the same loop.  For example,
  # a HW and Reheat
  area_served_m2 = 0.0
  zones_served.uniq.each do |zone|
    area_served_m2 += zone.floorArea
  end
  area_served_ft2 = OpenStudio.convert(area_served_m2, 'm^2', 'ft^2').get

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, serves #{area_served_ft2.round} ft^2.")

  return area_served_m2
end

#total_heating_capacityDouble

TODO:

Add district heating to plant loop heating capacity

Get the total heating capacity for the plant loop

Returns:

  • (Double)

    total heating capacity units = Watts (W)



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 540

def total_heating_capacity
  # Sum the heating capacity for all heating components
  # on the plant loop.
  total_heating_capacity_w = 0
  supplyComponents.each do |sc|
    # BoilerHotWater
    if sc.to_BoilerHotWater.is_initialized
      boiler = sc.to_BoilerHotWater.get
      if boiler.nominalCapacity.is_initialized
        total_heating_capacity_w += boiler.nominalCapacity.get
      elsif boiler.autosizedNominalCapacity.is_initialized
        total_heating_capacity_w += boiler.autosizedNominalCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{self.name} capacity of Boiler:HotWater ' #{boiler.name} is not available, total heating capacity of plant loop will be incorrect when applying standard.")
      end
    # WaterHeater:Mixed
    elsif sc.to_WaterHeaterMixed.is_initialized
      water_heater = sc.to_WaterHeaterMixed.get
      if water_heater.heaterMaximumCapacity.is_initialized
        total_heating_capacity_w += water_heater.heaterMaximumCapacity.get
      elsif water_heater.autosizedHeaterMaximumCapacity.is_initialized
        total_heating_capacity_w += water_heater.autosizedHeaterMaximumCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{self.name} capacity of WaterHeater:Mixed #{water_heater.name} is not available, total heating capacity of plant loop will be incorrect when applying standard.")
      end
    # WaterHeater:Stratified
    elsif sc.to_WaterHeaterStratified.is_initialized
      water_heater = sc.to_WaterHeaterStratified.get
      if water_heater.heater1Capacity.is_initialized
        total_heating_capacity_w += water_heater.heater1Capacity.get
      end
      if water_heater.heater2Capacity.is_initialized
        total_heating_capacity_w += water_heater.heater2Capacity.get
      end
    # DistrictHeating
    elsif sc.to_DistrictHeating.is_initialized
      dist_htg = sc.to_DistrictHeating.get
      if dist_htg.nominalCapacity.is_initialized
        total_heating_capacity_w += dist_htg.nominalCapacity.get
      elsif dist_htg.autosizedNominalCapacity.is_initialized
        total_heating_capacity_w += dist_htg.autosizedNominalCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.PlantLoop', "For #{self.name} capacity of DistrictHeating #{dist_htg.name} is not available, total heating capacity of plant loop will be incorrect when applying standard.")
      end
    end
  end # End loop on supplyComponents

  total_heating_capacity_kbtu_per_hr = OpenStudio.convert(total_heating_capacity_w,'W','kBtu/hr').get
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.PlantLoop', "For #{self.name}, heating capacity is #{total_heating_capacity_kbtu_per_hr.round} kBtu/hr.")

  return total_heating_capacity_w
end

#total_rated_w_per_gpmDouble

Determines the total rated watts per GPM of the loop

Returns:

  • (Double)

    rated power consumption per flow @units Watts per GPM (W*s/m^3)



1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 1163

def total_rated_w_per_gpm
  sizing_plant = sizingPlant
  loop_type = sizing_plant.loopType

  # Supply W/GPM
  supply_w_per_gpm = 0
  demand_w_per_gpm = 0

  supplyComponents.each do |component|
    if component.to_PumpConstantSpeed.is_initialized
      pump = component.to_PumpConstantSpeed.get
      pump_rated_w_per_gpm = pump.rated_w_per_gpm
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "'#{loop_type}' Loop #{name} - Primary (Supply) Constant Speed Pump '#{pump.name}' - pump_rated_w_per_gpm #{pump_rated_w_per_gpm} W/GPM")
      supply_w_per_gpm += pump_rated_w_per_gpm
    elsif component.to_PumpVariableSpeed.is_initialized
      pump = component.to_PumpVariableSpeed.get
      pump_rated_w_per_gpm = pump.rated_w_per_gpm
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "'#{loop_type}' Loop #{name} - Primary (Supply) VSD Pump '#{pump.name}' - pump_rated_w_per_gpm #{pump_rated_w_per_gpm} W/GPM")
      supply_w_per_gpm += pump_rated_w_per_gpm
    end
  end

  # Determine if primary only or primary-secondary
  # IF there's a pump on the demand side it's primary-secondary
  demand_pumps = demandComponents('OS:Pump:VariableSpeed'.to_IddObjectType) + demandComponents('OS:Pump:ConstantSpeed'.to_IddObjectType)
  demand_pumps.each do |component|
    if component.to_PumpConstantSpeed.is_initialized
      pump = component.to_PumpConstantSpeed.get
      pump_rated_w_per_gpm = pump.rated_w_per_gpm
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "'#{loop_type}' Loop #{name} - Secondary (Demand) Constant Speed Pump '#{pump.name}' - pump_rated_w_per_gpm #{pump_rated_w_per_gpm} W/GPM")
      demand_w_per_gpm += pump_rated_w_per_gpm
    elsif component.to_PumpVariableSpeed.is_initialized
      pump = component.to_PumpVariableSpeed.get
      pump_rated_w_per_gpm = pump.rated_w_per_gpm
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Pump', "'#{loop_type}' Loop #{name} - Secondary (Demand) VSD Pump '#{pump.name}' - pump_rated_w_per_gpm #{pump_rated_w_per_gpm} W/GPM")
      demand_w_per_gpm += pump_rated_w_per_gpm
    end
  end

  total_rated_w_per_gpm = supply_w_per_gpm + demand_w_per_gpm

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.Loop', "'#{loop_type}' Loop #{name} - Total #{total_rated_w_per_gpm} W/GPM - Supply #{supply_w_per_gpm} W/GPM - Demand #{demand_w_per_gpm} W/GPM")

  return total_rated_w_per_gpm
end

#variable_flow_system?Boolean

Returns:

  • (Boolean)


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# File 'lib/openstudio-standards/standards/Standards.PlantLoop.rb', line 19

def variable_flow_system?
  variable_flow = false

  # Modify all the primary pumps
  supplyComponents.each do |sc|
    if sc.to_PumpVariableSpeed.is_initialized
      variable_flow = true
    end
  end

  # Modify all the secondary pumps
  demandComponents.each do |sc|
    if sc.to_PumpVariableSpeed.is_initialized
      variable_flow = true
    end
  end

  return variable_flow
end