Class: OpenStudio::Model::AirLoopHVAC

Inherits:
Object
  • Object
show all
Defined in:
lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb,
lib/openstudio-standards/hvac_sizing/Siz.AirLoopHVAC.rb

Overview

Reopen the OpenStudio class to add methods to apply standards to this object

Instance Method Summary collapse

Instance Method Details

#add_motorized_oa_damper(min_occ_pct = 0.15, occ_sch = nil) ⇒ Bool

Add a motorized damper by modifying the OA schedule to require zero OA during unoccupied hours. This means that even during morning warmup or nightcyling, no OA will be brought into the building, lowering heating/cooling load. If no occupancy schedule is supplied, one will be created. In this case, occupied is defined as the total percent occupancy for the loop for all zones served.

the system will be considered unoccupied. If not supplied, one will be created based on the supplied occupancy threshold.

Parameters:

  • min_occ_pct (Double) (defaults to: 0.15)

    the fractional value below which

  • occ_sch (OpenStudio::Model::Schedule) (defaults to: nil)

    the occupancy schedule.

Returns:

  • (Bool)

    true if successful, false if not



2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2765

def add_motorized_oa_damper(min_occ_pct = 0.15, occ_sch = nil)
  # Get the airloop occupancy schedule if none supplied
  if occ_sch.nil?
    occ_sch = get_occupancy_schedule(min_occ_pct)
    flh = occ_sch.annual_equivalent_full_load_hrs
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Annual occupied hours = #{flh.round} hr/yr, assuming a #{min_occ_pct} occupancy threshold.  This schedule will be used to close OA damper during unoccupied hours.")
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Setting motorized OA damper schedule to #{occ_sch.name}.")
  end

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir

  # Set the minimum OA schedule to follow occupancy
  oa_control.setMinimumOutdoorAirSchedule(occ_sch)

  return true
end

#adjust_minimum_vav_damper_positionsBool

TODO:

Add exception logic for systems serving parking garage, warehouse, or multifamily

Adjust minimum VAV damper positions to the values

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2021

def adjust_minimum_vav_damper_positions
  # Total uncorrected outdoor airflow rate
  v_ou = 0.0
  thermalZones.each do |zone|
    v_ou += zone.outdoor_airflow_rate
  end

  v_ou_cfm = OpenStudio.convert(v_ou, 'm^3/s', 'cfm').get

  # System primary airflow rate (whether autosized or hard-sized)
  v_ps = 0.0

  v_ps = if autosizedDesignSupplyAirFlowRate.is_initialized
           autosizedDesignSupplyAirFlowRate.get
         else
           designSupplyAirFlowRate.get
         end
  v_ps_cfm = OpenStudio.convert(v_ps, 'm^3/s', 'cfm').get

  # Average outdoor air fraction
  x_s = v_ou / v_ps

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: v_ou = #{v_ou_cfm.round} cfm, v_ps = #{v_ps_cfm.round} cfm, x_s = #{x_s.round(2)}.")

  # Determine the zone ventilation effectiveness
  # for every zone on the system.
  # When ventilation effectiveness is too low,
  # increase the minimum damper position.
  e_vzs = []
  e_vzs_adj = []
  num_zones_adj = 0
  thermalZones.sort.each do |zone|
    # Breathing zone airflow rate
    v_bz = zone.outdoor_airflow_rate

    # Zone air distribution, assumed 1 per PNNL
    e_z = 1.0

    # Zone airflow rate
    v_oz = v_bz / e_z

    # Primary design airflow rate
    # max of heating and cooling
    # design air flow rates
    v_pz = 0.0
    clg_dsn_flow = zone.autosizedCoolingDesignAirFlowRate
    if clg_dsn_flow.is_initialized
      clg_dsn_flow = clg_dsn_flow.get
      if clg_dsn_flow > v_pz
        v_pz = clg_dsn_flow
      end
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}: #{zone.name} clg_dsn_flow could not be found.")
    end
    htg_dsn_flow = zone.autosizedHeatingDesignAirFlowRate
    if htg_dsn_flow.is_initialized
      htg_dsn_flow = htg_dsn_flow.get
      if htg_dsn_flow > v_pz
        v_pz = htg_dsn_flow
      end
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}: #{zone.name} htg_dsn_flow could not be found.")
    end

    # Get the minimum damper position
    mdp_term = 1.0
    min_zn_flow = 0.0
    zone.equipment.each do |equip|
      if equip.to_AirTerminalSingleDuctVAVHeatAndCoolNoReheat.is_initialized
        term = equip.to_AirTerminalSingleDuctVAVHeatAndCoolNoReheat.get
        mdp_term = term.zoneMinimumAirFlowFraction
      elsif equip.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.is_initialized
        term = equip.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.get
        mdp_term = term.zoneMinimumAirFlowFraction
      elsif equip.to_AirTerminalSingleDuctVAVNoReheat.is_initialized
        term = equip.to_AirTerminalSingleDuctVAVNoReheat.get
        if term.constantMinimumAirFlowFraction.is_initialized
          mdp_term = term.constantMinimumAirFlowFraction.get
        end
      elsif equip.to_AirTerminalSingleDuctVAVReheat.is_initialized
        term = equip.to_AirTerminalSingleDuctVAVReheat.get
        mdp_term = term.constantMinimumAirFlowFraction
        min_zn_flow = term.fixedMinimumAirFlowRate
      end
    end

    # For VAV Reheat terminals, min flow is greater of mdp
    # and min flow rate / design flow rate.
    mdp = mdp_term
    mdp_oa = min_zn_flow / v_ps
    if min_zn_flow > 0.0
      mdp = [mdp_term, mdp_oa].max.round(2)
    end
    # OpenStudio::logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{self.name}: Zone #{zone.name} mdp_term = #{mdp_term.round(2)}, mdp_oa = #{mdp_oa.round(2)}; mdp_final = #{mdp}")

    # Zone minimum discharge airflow rate
    v_dz = v_pz * mdp

    # Zone discharge air fraction
    z_d = v_oz / v_dz

    # Zone ventilation effectiveness
    e_vz = 1 + x_s - z_d

    # Store the ventilation effectiveness
    e_vzs << e_vz

    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: Zone #{zone.name} v_oz = #{v_oz.round(2)} m^3/s, v_pz = #{v_pz.round(2)} m^3/s, v_dz = #{v_dz.round(2)}, z_d = #{z_d.round(2)}.")

    # Check the ventilation effectiveness against
    # the minimum limit per PNNL and increase
    # as necessary.
    if e_vz < 0.6

      # Adjusted discharge air fraction
      z_d_adj = 1 + x_s - 0.6

      # Adjusted min discharge airflow rate
      v_dz_adj = v_oz / z_d_adj

      # Adjusted minimum damper position
      mdp_adj = v_dz_adj / v_pz

      # Don't allow values > 1
      if mdp_adj > 1.0
        mdp_adj = 1.0
      end

      # Zone ventilation effectiveness
      e_vz_adj = 1 + x_s - z_d_adj

      # Store the ventilation effectiveness
      e_vzs_adj << e_vz_adj

      # Set the adjusted minimum damper position
      zone.equipment.each do |equip|
        if equip.to_AirTerminalSingleDuctVAVHeatAndCoolNoReheat.is_initialized
          term = equip.to_AirTerminalSingleDuctVAVHeatAndCoolNoReheat.get
          term.setZoneMinimumAirFlowFraction(mdp_adj)
        elsif equip.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.is_initialized
          term = equip.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.get
          term.setZoneMinimumAirFlowFraction(mdp_adj)
        elsif equip.to_AirTerminalSingleDuctVAVNoReheat.is_initialized
          term = equip.to_AirTerminalSingleDuctVAVNoReheat.get
          term.setConstantMinimumAirFlowFraction(mdp_adj)
        elsif equip.to_AirTerminalSingleDuctVAVReheat.is_initialized
          term = equip.to_AirTerminalSingleDuctVAVReheat.get
          term.setConstantMinimumAirFlowFraction(mdp_adj)
        end
      end

      num_zones_adj += 1

      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Zone #{zone.name} has a ventilation effectiveness of #{e_vz.round(2)}.  Increasing to #{e_vz_adj.round(2)} by increasing minimum damper position from #{mdp.round(2)} to #{mdp_adj.round(2)}.")

    else
      # Store the unadjusted value
      e_vzs_adj << e_vz
    end
  end

  # Min system zone ventilation effectiveness
  e_v = e_vzs.min

  # Total system outdoor intake flow rate
  v_ot = v_ou / e_v
  v_ot_cfm = OpenStudio.convert(v_ot, 'm^3/s', 'cfm').get

  # Min system zone ventilation effectiveness
  e_v_adj = e_vzs_adj.min

  # Total system outdoor intake flow rate
  v_ot_adj = v_ou / e_v_adj
  v_ot_adj_cfm = OpenStudio.convert(v_ot_adj, 'm^3/s', 'cfm').get

  # Report out the results of the multizone calculations
  if num_zones_adj > 0
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: the multizone outdoor air calculation method was applied.  A simple summation of the zone outdoor air requirements gives a value of #{v_ou_cfm.round} cfm.  Applying the multizone method gives a value of #{v_ot_cfm.round} cfm, with an original system ventilation effectiveness of #{e_v.round(2)}.  After increasing the minimum damper position in #{num_zones_adj} critical zones, the resulting requirement is #{v_ot_adj_cfm.round} cfm with a system ventilation effectiveness of #{e_v_adj.round(2)}.")
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: the multizone outdoor air calculation method was applied.  A simple summation of the zone requirements gives a value of #{v_ou_cfm.round} cfm.  However, applying the multizone method requires #{v_ot_adj_cfm.round} cfm based on the ventilation effectiveness of the system.")
  end

  # Hard-size the sizing:system
  # object with the calculated min OA flow rate
  sizing_system = sizingSystem
  sizing_system.setDesignOutdoorAirFlowRate(v_ot_adj)

  return true
end

#adjust_minimum_vav_damper_positions_outpatientObject

For critical zones of Outpatient, if the minimum airflow rate required by the accreditation standard (AIA 2001) is significantly less than the autosized peak design airflow in any of the three climate zones (Houston, Baltimore and Burlington), the minimum airflow fraction of the terminal units is reduced to the value: “required minimum airflow rate / autosized peak design flow” Reference: <Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010> Page109-111 For implementation purpose, since it is time-consuming to perform autosizing in three climate zones, just use the results of the current climate zone



2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2217

def adjust_minimum_vav_damper_positions_outpatient
  model.getSpaces.each do |space|
    zone = space.thermalZone.get
    sizing_zone = zone.sizingZone
    space_area = space.floorArea
    if sizing_zone.coolingDesignAirFlowMethod == 'DesignDay'
      next
    elsif sizing_zone.coolingDesignAirFlowMethod == 'DesignDayWithLimit'
      minimum_airflow_per_zone_floor_area = sizing_zone.coolingMinimumAirFlowperZoneFloorArea
      minimum_airflow_per_zone = minimum_airflow_per_zone_floor_area * space_area
      # get the autosized maximum air flow of the VAV terminal
      zone.equipment.each do |equip|
        if equip.to_AirTerminalSingleDuctVAVReheat.is_initialized
          vav_terminal = equip.to_AirTerminalSingleDuctVAVReheat.get
          rated_maximum_flow_rate = vav_terminal.autosizedMaximumAirFlowRate.get
          # compare the VAV autosized maximum airflow with the minimum airflow rate required by the accreditation standard
          ratio = minimum_airflow_per_zone / rated_maximum_flow_rate
          if ratio >= 0.95
            vav_terminal.setConstantMinimumAirFlowFraction(1)
          elsif ratio < 0.95
            vav_terminal.setConstantMinimumAirFlowFraction(ratio)
          end
        end
      end
    end
  end
  return true
end

#allowable_system_brake_horsepower(template = 'ASHRAE 90.1-2007') ⇒ Double

Determine the allowable fan system brake horsepower Per Table 6.5.3.1.1A

Parameters:

  • template (String) (defaults to: 'ASHRAE 90.1-2007')

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Double)

    allowable fan system brake horsepower units = horsepower



281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 281

def allowable_system_brake_horsepower(template = 'ASHRAE 90.1-2007')
  # Get design supply air flow rate (whether autosized or hard-sized)
  dsn_air_flow_m3_per_s = 0
  dsn_air_flow_cfm = 0
  if autosizedDesignSupplyAirFlowRate.is_initialized
    dsn_air_flow_m3_per_s = autosizedDesignSupplyAirFlowRate.get
    dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = Autosized Design Supply Air Flow Rate.")
  else
    dsn_air_flow_m3_per_s = designSupplyAirFlowRate.get
    dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = Hard sized Design Supply Air Flow Rate.")
  end

  # Get the fan limitation pressure drop adjustment bhp
  fan_pwr_adjustment_bhp = fan_power_limitation_pressure_drop_adjustment_brake_horsepower

  # Determine the number of zones the system serves
  num_zones_served = thermalZones.size

  # Get the supply air fan and determine whether VAV or CAV system.
  # Assume that supply air fan is fan closest to the demand outlet node.
  # The fan may be inside of a piece of unitary equipment.
  fan_pwr_limit_type = nil
  supplyComponents.reverse.each do |comp|
    if comp.to_FanConstantVolume.is_initialized || comp.to_FanOnOff.is_initialized
      fan_pwr_limit_type = 'constant volume'
    elsif comp.to_FanVariableVolume.is_initialized
      fan_pwr_limit_type = 'variable volume'
    elsif comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.is_initialized
      fan = comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.get.supplyAirFan
      if fan.to_FanConstantVolume.is_initialized || comp.to_FanOnOff.is_initialized
        fan_pwr_limit_type = 'constant volume'
      elsif fan.to_FanVariableVolume.is_initialized
        fan_pwr_limit_type = 'variable volume'
      end
    elsif comp.to_AirLoopHVACUnitarySystem.is_initialized
      fan = comp.to_AirLoopHVACUnitarySystem.get.supplyFan
      if fan.to_FanConstantVolume.is_initialized || comp.to_FanOnOff.is_initialized
        fan_pwr_limit_type = 'constant volume'
      elsif fan.to_FanVariableVolume.is_initialized
        fan_pwr_limit_type = 'variable volume'
      end
    end
  end

  # For 90.1-2010, single-zone VAV systems use the
  # constant volume limitation per 6.5.3.1.1
  if template == 'ASHRAE 90.1-2010' && fan_pwr_limit_type == 'variable volume' && num_zones_served == 1
    fan_pwr_limit_type = 'constant volume'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Using the constant volume limitation because single-zone VAV system.")
  end

  # Calculate the Allowable Fan System brake horsepower per Table G3.1.2.9
  allowable_fan_bhp = 0
  if fan_pwr_limit_type == 'constant volume'
    allowable_fan_bhp = dsn_air_flow_cfm * 0.00094 + fan_pwr_adjustment_bhp
  elsif fan_pwr_limit_type == 'variable volume'
    allowable_fan_bhp = dsn_air_flow_cfm * 0.0013 + fan_pwr_adjustment_bhp
  end
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Allowable brake horsepower = #{allowable_fan_bhp.round(2)}HP based on #{dsn_air_flow_cfm.round} cfm and #{fan_pwr_adjustment_bhp.round(2)} bhp of adjustment.")

  # Calculate and report the total area for debugging/testing
  floor_area_served_m2 = floor_area_served
  floor_area_served_ft2 = OpenStudio.convert(floor_area_served_m2, 'm^2', 'ft^2').get
  cfm_per_ft2 = dsn_air_flow_cfm / floor_area_served_ft2
  cfm_per_hp = dsn_air_flow_cfm / allowable_fan_bhp
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: area served = #{floor_area_served_ft2.round} ft^2.")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: flow per area = #{cfm_per_ft2.round} cfm/ft^2.")
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: flow per hp = #{cfm_per_hp.round} cfm/hp.")

  return allowable_fan_bhp
end

#apply_baseline_fan_pressure_rise(template = 'ASHRAE 90.1-2007') ⇒ Object

Set the fan pressure rises that will result in the system hitting the baseline allowable fan power

Parameters:

  • template (String) (defaults to: 'ASHRAE 90.1-2007')

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 440

def apply_baseline_fan_pressure_rise(template = 'ASHRAE 90.1-2007')
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name}-Setting #{template} baseline fan power.")

  # Get the total system bhp from the proposed system, including terminal fans
  proposed_sys_bhp = system_fan_brake_horsepower(true)

  # Get the allowable fan brake horsepower
  allowable_fan_bhp = allowable_system_brake_horsepower(template)

  # Get the fan power limitation from proposed system
  fan_pwr_adjustment_bhp = fan_power_limitation_pressure_drop_adjustment_brake_horsepower

  # Subtract the fan power adjustment
  allowable_fan_bhp -= fan_pwr_adjustment_bhp

  # Get all fans
  fans = supply_return_exhaust_relief_fans

  # TODO: improve description
  # Loop through the fans, changing the pressure rise
  # until the fan bhp is the same percentage of the baseline allowable bhp
  # as it was on the proposed system.
  fans.each do |fan|
    # TODO: Yixing Check the model of the Fan Coil Unit
    next if fan.name.to_s.include?('Fan Coil fan')
    next if fan.name.to_s.include?('UnitHeater Fan')

    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', fan.name.to_s)

    # Get the bhp of the fan on the proposed system
    proposed_fan_bhp = fan.brake_horsepower

    # Get the bhp of the fan on the proposed system
    proposed_fan_bhp_frac = proposed_fan_bhp / proposed_sys_bhp

    # Determine the target bhp of the fan on the baseline system
    baseline_fan_bhp = proposed_fan_bhp_frac * allowable_fan_bhp
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "* #{baseline_fan_bhp.round(1)} bhp = Baseline fan brake horsepower.")

    # Set the baseline impeller eff of the fan,
    # preserving the proposed motor eff.
    baseline_impeller_eff = fan.baseline_impeller_efficiency(template)
    fan.change_impeller_efficiency(baseline_impeller_eff)
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "* #{(baseline_impeller_eff * 100).round(1)}% = Baseline fan impeller efficiency.")

    # Set the baseline motor efficiency for the specified bhp
    baseline_motor_eff = fan.standardMinimumMotorEfficiency(template, standards, allowable_fan_bhp)
    fan.change_motor_efficiency(baseline_motor_eff)

    # Get design supply air flow rate (whether autosized or hard-sized)
    dsn_air_flow_m3_per_s = 0
    if fan.autosizedDesignSupplyAirFlowRate.is_initialized
      dsn_air_flow_m3_per_s = fan.autosizedDesignSupplyAirFlowRate.get
      dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = Autosized Design Supply Air Flow Rate.")
    else
      dsn_air_flow_m3_per_s = fan.designSupplyAirFlowRate.get
      dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = User entered Design Supply Air Flow Rate.")
    end

    # Determine the fan pressure rise that will result in the target bhp
    # pressure_rise_pa = fan_bhp*746 / fan_motor_eff*fan_total_eff / dsn_air_flow_m3_per_s
    baseline_pressure_rise_pa = baseline_fan_bhp * 746 / fan.motorEfficiency * fan.fanEfficiency / dsn_air_flow_m3_per_s
    baseline_pressure_rise_in_wc = OpenStudio.convert(fan_pressure_rise_pa, 'Pa', 'inH_{2}O').get
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "* #{fan_pressure_rise_in_wc.round(2)} in w.c. = Pressure drop to achieve allowable fan power.")

    # Calculate the bhp of the fan to make sure it matches
    calc_bhp = fan.brake_horsepower
    if ((calc_bhp - baseline_fan_bhp) / baseline_fan_bhp).abs > 0.02
      OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.AirLoopHVAC', "#{fan.name} baseline fan bhp supposed to be #{baseline_fan_bhp}, but is #{calc_bhp}.")
    end
  end

  # Calculate the total bhp of the system to make sure it matches the goal
  calc_sys_bhp = system_fan_brake_horsepower(false)
  if ((calc_sys_bhp - allowable_fan_bhp) / allowable_fan_bhp).abs > 0.02
    OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.AirLoopHVAC', "#{name} baseline system bhp supposed to be #{allowable_fan_bhp}, but is #{calc_sys_bhp}.")
  end
end

#apply_economizer_integration(template, climate_zone) ⇒ Bool

Note:

this method assumes you previously checked that an economizer is required at all via #economizer_required?

For systems required to have an economizer, set the economizer to integrated on non-integrated per the standard.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if successful, false if not



933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 933

def apply_economizer_integration(template, climate_zone)
  # Determine if the system is a VAV system based on the fan
  # which may be inside of a unitary system.
  is_vav = false
  supplyComponents.reverse.each do |comp|
    if comp.to_FanVariableVolume.is_initialized
      is_vav = true
    elsif comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.is_initialized
      fan = comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.get.supplyAirFan
      if fan.to_FanVariableVolume.is_initialized
        is_vav = true
      end
    elsif comp.to_AirLoopHVACUnitarySystem.is_initialized
      fan = comp.to_AirLoopHVACUnitarySystem.get.supplyFan
      if fan.is_initialized
        if fan.get.to_FanVariableVolume.is_initialized
          is_vav = true
        end
      end
    end
  end

  # Determine the number of zones the system serves
  num_zones_served = thermalZones.size

  # A big number of btu per hr as the minimum requirement
  infinity_btu_per_hr = 999_999_999_999
  minimum_capacity_btu_per_hr = infinity_btu_per_hr

  # Determine if an integrated economizer is required
  integrated_economizer_required = true
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'
    minimum_capacity_btu_per_hr = 65_000
    minimum_capacity_w = OpenStudio.convert(minimum_capacity_btu_per_hr, 'Btu/hr', 'W').get
    # 6.5.1.3 Integrated Economizer Control
    # Exception a, DX VAV systems
    if is_vav == true && num_zones_served > 1
      integrated_economizer_required = false
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: non-integrated economizer per 6.5.1.3 exception a, DX VAV system.")
      # Exception b, DX units less than 65,000 Btu/hr
    elsif total_cooling_capacity < minimum_capacity_w
      integrated_economizer_required = false
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: non-integrated economizer per 6.5.1.3 exception b, DX system less than #{minimum_capacity_btu_per_hr}Btu/hr.")
    else
      # Exception c, Systems in climate zones 1,2,3a,4a,5a,5b,6,7,8
      case climate_zone
      when 'ASHRAE 169-2006-1A',
          'ASHRAE 169-2006-1B',
          'ASHRAE 169-2006-2A',
          'ASHRAE 169-2006-2B',
          'ASHRAE 169-2006-3A',
          'ASHRAE 169-2006-4A',
          'ASHRAE 169-2006-5A',
          'ASHRAE 169-2006-5B',
          'ASHRAE 169-2006-6A',
          'ASHRAE 169-2006-6B',
          'ASHRAE 169-2006-7A',
          'ASHRAE 169-2006-7B',
          'ASHRAE 169-2006-8A',
          'ASHRAE 169-2006-8B'
        integrated_economizer_required = false
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: non-integrated economizer per 6.5.1.3 exception c, climate zone #{climate_zone}.")
      when 'ASHRAE 169-2006-3B',
          'ASHRAE 169-2006-3C',
          'ASHRAE 169-2006-4B',
          'ASHRAE 169-2006-4C',
          'ASHRAE 169-2006-5C'
        integrated_economizer_required = true
      end
    end
  when '90.1-2010', '90.1-2013'
    integrated_economizer_required = true
  when 'NECB 2011'
    # this means that compressor allowed to turn on when economizer is open
    # (NoLockout); as per 5.2.2.8(3)
    integrated_economizer_required = true
  end

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir

  # Apply integrated or non-integrated economizer
  if integrated_economizer_required
    oa_control.setLockoutType('NoLockout')
  else
    oa_control.setLockoutType('LockoutWithCompressor')
  end

  return true
end

#apply_economizer_limits(template, climate_zone) ⇒ Bool

Set the economizer limits per the standard. Limits are based on the economizer type currently specified in the ControllerOutdoorAir object on this air loop.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if successful, false if not



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 799

def apply_economizer_limits(template, climate_zone)
  # EnergyPlus economizer types
  # 'NoEconomizer'
  # 'FixedDryBulb'
  # 'FixedEnthalpy'
  # 'DifferentialDryBulb'
  # 'DifferentialEnthalpy'
  # 'FixedDewPointAndDryBulb'
  # 'ElectronicEnthalpy'
  # 'DifferentialDryBulbAndEnthalpy'

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  # Return false if no economizer is present
  if economizer_type == 'NoEconomizer'
    return false
  end

  # Determine the limits according to the type
  drybulb_limit_f = nil
  enthalpy_limit_btu_per_lb = nil
  dewpoint_limit_f = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'
    case economizer_type
    when 'FixedDryBulb'
      case climate_zone
      when 'ASHRAE 169-2006-1B',
          'ASHRAE 169-2006-2B',
          'ASHRAE 169-2006-3B',
          'ASHRAE 169-2006-3C',
          'ASHRAE 169-2006-4B',
          'ASHRAE 169-2006-4C',
          'ASHRAE 169-2006-5B',
          'ASHRAE 169-2006-5C',
          'ASHRAE 169-2006-6B',
          'ASHRAE 169-2006-7B',
          'ASHRAE 169-2006-8A',
          'ASHRAE 169-2006-8B'
        drybulb_limit_f = 75
      when 'ASHRAE 169-2006-5A',
          'ASHRAE 169-2006-6A',
          'ASHRAE 169-2006-7A'
        drybulb_limit_f = 70
      when 'ASHRAE 169-2006-1A',
          'ASHRAE 169-2006-2A',
          'ASHRAE 169-2006-3A',
          'ASHRAE 169-2006-4A'
        drybulb_limit_f = 65
      end
    when 'FixedEnthalpy'
      enthalpy_limit_btu_per_lb = 28
    when 'FixedDewPointAndDryBulb'
      drybulb_limit_f = 75
      dewpoint_limit_f = 55
    end
  when '90.1-2010', '90.1-2013'
    case economizer_type
    when 'FixedDryBulb'
      case climate_zone
      when 'ASHRAE 169-2006-1B',
          'ASHRAE 169-2006-2B',
          'ASHRAE 169-2006-3B',
          'ASHRAE 169-2006-3C',
          'ASHRAE 169-2006-4B',
          'ASHRAE 169-2006-4C',
          'ASHRAE 169-2006-5B',
          'ASHRAE 169-2006-5C',
          'ASHRAE 169-2006-6B',
          'ASHRAE 169-2006-7A',
          'ASHRAE 169-2006-7B',
          'ASHRAE 169-2006-8A',
          'ASHRAE 169-2006-8B'
        drybulb_limit_f = 75
      when 'ASHRAE 169-2006-5A',
          'ASHRAE 169-2006-6A'
        drybulb_limit_f = 70
      end
    when 'FixedEnthalpy'
      enthalpy_limit_btu_per_lb = 28
    when 'FixedDewPointAndDryBulb'
      drybulb_limit_f = 75
      dewpoint_limit_f = 55
    end
  end

  # Reset the limits
  oa_control.resetEconomizerMaximumLimitDryBulbTemperature
  oa_control.resetEconomizerMaximumLimitEnthalpy
  oa_control.resetEconomizerMaximumLimitDewpointTemperature
  oa_control.resetEconomizerMinimumLimitDryBulbTemperature

  # Set the limits
  case economizer_type
  when 'FixedDryBulb'
    if drybulb_limit_f
      drybulb_limit_c = OpenStudio.convert(drybulb_limit_f, 'F', 'C').get
      oa_control.setEconomizerMaximumLimitDryBulbTemperature(drybulb_limit_c)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, dry bulb limit = #{drybulb_limit_f}F")
    end
  when 'FixedEnthalpy'
    if enthalpy_limit_btu_per_lb
      enthalpy_limit_j_per_kg = OpenStudio.convert(enthalpy_limit_btu_per_lb, 'Btu/lb', 'J/kg').get
      oa_control.setEconomizerMaximumLimitEnthalpy(enthalpy_limit_j_per_kg)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, enthalpy limit = #{enthalpy_limit_btu_per_lb}Btu/lb")
    end
  when 'FixedDewPointAndDryBulb'
    if drybulb_limit_f && dewpoint_limit_f
      drybulb_limit_c = OpenStudio.convert(drybulb_limit_f, 'F', 'C').get
      dewpoint_limit_c = OpenStudio.convert(dewpoint_limit_f, 'F', 'C').get
      oa_control.setEconomizerMaximumLimitDryBulbTemperature(drybulb_limit_c)
      oa_control.setEconomizerMaximumLimitDewpointTemperature(dewpoint_limit_c)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, dry bulb limit = #{drybulb_limit_f}F, dew-point limit = #{dewpoint_limit_f}F")
    end
  end

  return true
end

#apply_energy_recovery_ventilator(template) ⇒ Bool

TODO:

Add exception logic for systems serving parking garage, warehouse, or multifamily

Add an ERV to this airloop. Will be a rotary-type HX

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1790

def apply_energy_recovery_ventilator(template)
  # Get the oa system
  oa_system = nil
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV cannot be added because the system has no OA intake.")
    return false
  end

  # Create an ERV
  erv = OpenStudio::Model::HeatExchangerAirToAirSensibleAndLatent.new(model)
  erv.setName("#{name} ERV")
  if template == 'NECB 2011'
    erv.setSensibleEffectivenessat100HeatingAirFlow(0.5)
    erv.setLatentEffectivenessat100HeatingAirFlow(0.5)
    erv.setSensibleEffectivenessat75HeatingAirFlow(0.5)
    erv.setLatentEffectivenessat75HeatingAirFlow(0.5)
    erv.setSensibleEffectivenessat100CoolingAirFlow(0.5)
    erv.setLatentEffectivenessat100CoolingAirFlow(0.5)
    erv.setSensibleEffectivenessat75CoolingAirFlow(0.5)
    erv.setLatentEffectivenessat75CoolingAirFlow(0.5)
  else
    erv.setSensibleEffectivenessat100HeatingAirFlow(0.7)
    erv.setLatentEffectivenessat100HeatingAirFlow(0.6)
    erv.setSensibleEffectivenessat75HeatingAirFlow(0.7)
    erv.setLatentEffectivenessat75HeatingAirFlow(0.6)
    erv.setSensibleEffectivenessat100CoolingAirFlow(0.75)
    erv.setLatentEffectivenessat100CoolingAirFlow(0.6)
    erv.setSensibleEffectivenessat75CoolingAirFlow(0.75)
    erv.setLatentEffectivenessat75CoolingAirFlow(0.6)
  end
  erv.setSupplyAirOutletTemperatureControl(true)
  erv.setHeatExchangerType('Rotary')
  erv.setFrostControlType('ExhaustOnly')
  erv.setEconomizerLockout(true)
  erv.setThresholdTemperature(-23.3) # -10F
  erv.setInitialDefrostTimeFraction(0.167)
  erv.setRateofDefrostTimeFractionIncrease(1.44)

  # Add the ERV to the OA system
  erv.addToNode(oa_system.outboardOANode.get)

  # Add a setpoint manager OA pretreat
  # to control the ERV
  spm_oa_pretreat = OpenStudio::Model::SetpointManagerOutdoorAirPretreat.new(model)
  spm_oa_pretreat.setMinimumSetpointTemperature(-99.0)
  spm_oa_pretreat.setMaximumSetpointTemperature(99.0)
  spm_oa_pretreat.setMinimumSetpointHumidityRatio(0.00001)
  spm_oa_pretreat.setMaximumSetpointHumidityRatio(1.0)
  # Reference setpoint node and
  # Mixed air stream node are outlet
  # node of the OA system
  mixed_air_node = oa_system.mixedAirModelObject.get.to_Node.get
  spm_oa_pretreat.setReferenceSetpointNode(mixed_air_node)
  spm_oa_pretreat.setMixedAirStreamNode(mixed_air_node)
  # Outdoor air node is
  # the outboard OA node of teh OA system
  spm_oa_pretreat.setOutdoorAirStreamNode(oa_system.outboardOANode.get)
  # Return air node is the inlet
  # node of the OA system
  return_air_node = oa_system.returnAirModelObject.get.to_Node.get
  spm_oa_pretreat.setReturnAirStreamNode(return_air_node)
  # Attach to the outlet of the ERV
  erv_outlet = erv.primaryAirOutletModelObject.get.to_Node.get
  spm_oa_pretreat.addToNode(erv_outlet)

  # Apply the prototype Heat Exchanger power assumptions.
  erv.apply_prototype_nominal_electric_power

  return true
end

#apply_maximum_reheat_temperature(max_reheat_c) ⇒ Bool

Sets the maximum reheat temperature to the specified value for all reheat terminals (of any type) on the loop.

Parameters:

  • max_reheat_c (Double)

    the maximum reheat temperature, in C

Returns:

  • (Bool)

    returns true if successful, false if not.



3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3600

def apply_maximum_reheat_temperature(max_reheat_c)
  demandComponents.each do |sc|
    if sc.to_AirTerminalSingleDuctConstantVolumeReheat.is_initialized
      term = sc.to_AirTerminalSingleDuctConstantVolumeReheat.get
      term.setMaximumReheatAirTemperature(max_reheat_c)
    elsif sc.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized
      # No control option available
    elsif sc.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized
      # No control option available
    elsif sc.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.is_initialized
      term = sc.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.get
      term.setMaximumReheatAirTemperature(max_reheat_c)
    elsif sc.to_AirTerminalSingleDuctVAVReheat.is_initialized
      term = sc.to_AirTerminalSingleDuctVAVReheat.get
      term.setMaximumReheatAirTemperature(max_reheat_c)
    end
  end

  max_reheat_f = OpenStudio.convert(max_reheat_c, 'C', 'F').get
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: reheat terminal maximum set to #{max_reheat_f.round} F.")

  return true
end

#apply_minimum_vav_damper_positions(template, has_ddc = true) ⇒ Bool

Set the minimum VAV damper positions.

is DDC control of vav terminals. If false, assumes otherwise.

Parameters:

  • template (String)

    the building template

  • has_ddc (Bool) (defaults to: true)

    if true, will assume that there

Returns:

  • (Bool)

    true if successful, false if not



2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2002

def apply_minimum_vav_damper_positions(template, has_ddc = true)
  thermalZones.each do |zone|
    zone.equipment.each do |equip|
      if equip.to_AirTerminalSingleDuctVAVReheat.is_initialized
        zone_oa = zone.outdoor_airflow_rate
        vav_terminal = equip.to_AirTerminalSingleDuctVAVReheat.get
        vav_terminal.apply_minimum_damper_position(template, zone_oa, has_ddc)
      end
    end
  end

  return true
end

#apply_multizone_vav_outdoor_air_sizing(template) ⇒ Object

Apply multizone vav outdoor air method and adjust multizone VAV damper positions to achieve a system minimum ventilation effectiveness of 0.6 per PNNL. Hard-size the resulting min OA into the sizing:system object.

return [Bool] returns true if successful, false if not



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 11

def apply_multizone_vav_outdoor_air_sizing(template)
  # TODO: enable damper position adjustment for legacy IDFS
  if template == 'DOE Ref Pre-1980' || template == 'DOE Ref 1980-2004'
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', 'Damper positions not modified for DOE Ref Pre-1980 or DOE Ref 1980-2004 vintages.')
    return true
  end

  # First time adjustment:
  # Only applies to multi-zone vav systems
  # exclusion: for Outpatient: (1) both AHU1 and AHU2 in 'DOE Ref Pre-1980' and 'DOE Ref 1980-2004'
  # (2) AHU1 in 2004-2013
  if multizone_vav_system? && !(name.to_s.include? 'Outpatient F1')
    adjust_minimum_vav_damper_positions
  end

  # Second time adjustment:
  # Only apply to 2010 and 2013 Outpatient (both AHU1 and AHU2)
  # TODO maybe apply to hospital as well?
  if (name.to_s.include? 'Outpatient') && (template == '90.1-2010' || template == '90.1-2013')
    adjust_minimum_vav_damper_positions_outpatient
  end

  return true
end

#apply_prm_baseline_controls(template, climate_zone) ⇒ Bool

Apply all PRM baseline required controls to the airloop. Only applies those controls that differ from the normal prescriptive controls, which are added via AirLoopHVAC.apply_standard_controls

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if successful, false if not



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 151

def apply_prm_baseline_controls(template, climate_zone)
  # Economizers
  if prm_baseline_economizer_required?(template, climate_zone)
    apply_prm_baseline_economizer(template, climate_zone)
  end

  # Multizone VAV Systems
  if multizone_vav_system?

    # VSD no Static Pressure Reset on all VAV systems
    # per G3.1.3.15
    supply_return_exhaust_relief_fans.each do |fan|
      if fan.to_FanVariableVolume.is_initialized
        OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Setting fan part load curve per G3.1.3.15.")
        fan.set_control_type('Multi Zone VAV with VSD and Fixed SP Setpoint')
      end
    end

    # SAT Reset
    # G3.1.3.12 SAT reset required for all Multizone VAV systems,
    # even if not required by prescriptive section.
    case template
    when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'
      enable_supply_air_temperature_reset_warmest_zone(template)
    end

  end

  # Unoccupied shutdown
  enable_unoccupied_fan_shutoff

  return true
end

#apply_prm_baseline_economizer(template, climate_zone) ⇒ Bool

Apply the PRM economizer type and set temperature limits

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if successful, false if not



1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1118

def apply_prm_baseline_economizer(template, climate_zone)
  # EnergyPlus economizer types
  # 'NoEconomizer'
  # 'FixedDryBulb'
  # 'FixedEnthalpy'
  # 'DifferentialDryBulb'
  # 'DifferentialEnthalpy'
  # 'FixedDewPointAndDryBulb'
  # 'ElectronicEnthalpy'
  # 'DifferentialDryBulbAndEnthalpy'

  # Determine the type and limits
  economizer_type = 'NoEconomizer'
  drybulb_limit_f = nil
  enthalpy_limit_btu_per_lb = nil
  dewpoint_limit_f = nil
  case template
  when '90.1-2004', '90.1-2007', '90.1-2010'
    case climate_zone
    when 'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-5C',
        'ASHRAE 169-2006-6B',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 75
    when 'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        'ASHRAE 169-2006-7A'
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 70
    else
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 65
    end
  when '90.1-2013'
    case climate_zone
    when 'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-5C',
        'ASHRAE 169-2006-6B',
        'ASHRAE 169-2006-7A',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 75
    when 'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      economizer_type = 'FixedEnthalpy'
      enthalpy_limit_btu_per_lb = 28
    when 'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        'ASHRAE 169-2006-7A'
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 70
    else
      economizer_type = 'FixedDryBulb'
      drybulb_limit_f = 65
    end
  end

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir

  # Set the economizer type
  oa_control.setEconomizerControlType(economizer_type)

  # Reset the limits
  oa_control.resetEconomizerMaximumLimitDryBulbTemperature
  oa_control.resetEconomizerMaximumLimitEnthalpy
  oa_control.resetEconomizerMaximumLimitDewpointTemperature
  oa_control.resetEconomizerMinimumLimitDryBulbTemperature

  # Set the limits
  case economizer_type
  when 'FixedDryBulb'
    if drybulb_limit_f
      drybulb_limit_c = OpenStudio.convert(drybulb_limit_f, 'F', 'C').get
      oa_control.setEconomizerMaximumLimitDryBulbTemperature(drybulb_limit_c)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, dry bulb limit = #{drybulb_limit_f}F")
    end
  when 'FixedEnthalpy'
    if enthalpy_limit_btu_per_lb
      enthalpy_limit_j_per_kg = OpenStudio.convert(enthalpy_limit_btu_per_lb, 'Btu/lb', 'J/kg').get
      oa_control.setEconomizerMaximumLimitEnthalpy(enthalpy_limit_j_per_kg)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, enthalpy limit = #{enthalpy_limit_btu_per_lb}Btu/lb")
    end
  when 'FixedDewPointAndDryBulb'
    if drybulb_limit_f && dewpoint_limit_f
      drybulb_limit_c = OpenStudio.convert(drybulb_limit_f, 'F', 'C').get
      dewpoint_limit_c = OpenStudio.convert(dewpoint_limit_f, 'F', 'C').get
      oa_control.setEconomizerMaximumLimitDryBulbTemperature(drybulb_limit_c)
      oa_control.setEconomizerMaximumLimitDewpointTemperature(dewpoint_limit_c)
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer type = #{economizer_type}, dry bulb limit = #{drybulb_limit_f}F, dew-point limit = #{dewpoint_limit_f}F")
    end
  end

  return true
end

#apply_prm_baseline_fan_power(template) ⇒ Object

TODO:

Figure out how to split fan power between multiple fans

Calculate and apply the performance rating method baseline fan power to this air loop. Fan motor efficiency will be set, and then fan pressure rise adjusted so that the fan power is the maximum allowable. Also adjusts the fan power and flow rates of any parallel PIU terminals on the system.

if the proposed model had multiple fans (supply, return, exhaust, etc.) return [Bool] true if successful, false if not.



196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 196

def apply_prm_baseline_fan_power(template)
  # Main AHU fans

  # Calculate the allowable fan motor bhp
  # for the entire airloop.
  allowable_fan_bhp = allowable_system_brake_horsepower(template)

  # Divide the allowable power evenly between the fans
  # on this airloop.
  all_fans = supply_return_exhaust_relief_fans
  allowable_fan_bhp /= all_fans.size

  # Set the motor efficiencies
  # for all fans based on the calculated
  # allowed brake hp.  Then calculate the allowable
  # fan power for each fan and adjust
  # the fan pressure rise accordingly
  all_fans.each do |fan|
    fan.apply_standard_minimum_motor_efficiency(template, allowable_fan_bhp)
    allowable_power_w = allowable_fan_bhp * 746 / fan.motorEfficiency
    fan.adjust_pressure_rise_to_meet_fan_power(allowable_power_w)
  end

  # Fan powered terminal fans

  # Adjust each terminal fan
  demandComponents.each do |dc|
    next if dc.to_AirTerminalSingleDuctParallelPIUReheat.empty?
    pfp_term = dc.to_AirTerminalSingleDuctParallelPIUReheat.get
    pfp_term.apply_prm_baseline_fan_power(template)
  end

  return true
end

#apply_prm_sizing_temperaturesBool

Set the system sizing properties based on the zone sizing information

Returns:

  • (Bool)

    true if successful, false if not.



3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3627

def apply_prm_sizing_temperatures
  # Get the design heating and cooling SAT information
  # for all zones served by the system.
  htg_setpts_c = []
  clg_setpts_c = []
  thermalZones.each do |zone|
    sizing_zone = zone.sizingZone
    htg_setpts_c << sizing_zone.zoneHeatingDesignSupplyAirTemperature
    clg_setpts_c << sizing_zone.zoneCoolingDesignSupplyAirTemperature
  end

  # Cooling SAT set to minimum zone cooling design SAT
  clg_sat_c = clg_setpts_c.min

  # If the system has terminal reheat,
  # heating SAT is set to the same value as cooling SAT
  # and the terminals are expected to do the heating.
  # If not, heating SAT set to maximum zone heating design SAT.
  has_term_rht = terminal_reheat?
  htg_sat_c = if has_term_rht
                clg_sat_c
              else
                htg_setpts_c.max
              end

  # Set the central SAT values
  sizing_system = sizingSystem
  sizing_system.setCentralCoolingDesignSupplyAirTemperature(clg_sat_c)
  sizing_system.setCentralHeatingDesignSupplyAirTemperature(htg_sat_c)

  clg_sat_f = OpenStudio.convert(clg_sat_c, 'C', 'F').get
  htg_sat_f = OpenStudio.convert(htg_sat_c, 'C', 'F').get
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: central heating SAT set to #{htg_sat_f.round} F, cooling SAT set to #{clg_sat_f.round} F.")

  # If it's a terminal reheat system, set the reheat terminal setpoints too
  if has_term_rht
    rht_c = htg_setpts_c.max
    apply_maximum_reheat_temperature(rht_c)
  end

  return true
end

#apply_single_zone_controls(template, climate_zone) ⇒ Object

Note:

The resulting EMS doesn’t actually get added to

Generate the EMS used to implement the economizer and staging controls for packaged single zone units. the IDF yet.



3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3049

def apply_single_zone_controls(template, climate_zone)
  # Number of stages is determined by the template
  num_stages = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', 'NECB 2011'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: No special economizer controls were modeled.")
    return true
  when '90.1-2004', '90.1-2007'
    num_stages = 1
  when '90.1-2010', '90.1-2013'
    num_stages = 2
  end

  # Scrub special characters from the system name
  sn = name.get.to_s
  snc = sn.gsub(/\W/, '').delete('_')

  # Get the zone name
  zone = thermalZones[0]
  zone_name = zone.name.get.to_s
  zn_name_clean = zone_name.gsub(/\W/, '_')

  # Zone air node
  zone_air_node_name = zone.zoneAirNode.name.get

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir
  oa_control_name = oa_control.name.get
  oa_node_name = oa_sys.outboardOANode.get.name.get

  # Get the name of the min oa schedule
  min_oa_sch_name = nil
  min_oa_sch_name = if oa_control.minimumOutdoorAirSchedule.is_initialized
                      oa_control.minimumOutdoorAirSchedule.get.name.get
                    else
                      model.alwaysOnDiscreteSchedule.name.get
                    end

  # Get the supply fan
  if supplyFan.empty?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: No supply fan found, cannot apply DX fan/economizer control.")
    return false
  end
  fan = supplyFan.get
  fan_name = fan.name.get

  # Supply outlet node
  sup_out_node = supplyOutletNode
  sup_out_node_name = sup_out_node.name.get

  # DX Cooling Coil
  dx_coil = nil
  supplyComponents.each do |equip|
    if equip.to_CoilCoolingDXSingleSpeed.is_initialized
      dx_coil = equip.to_CoilCoolingDXSingleSpeed.get
    elsif equip.to_CoilCoolingDXTwoSpeed.is_initialized
      dx_coil = equip.to_CoilCoolingDXTwoSpeed.get
    end
  end
  if dx_coil.nil?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: No DX cooling coil found, cannot apply DX fan/economizer control.")
    return false
  end
  dx_coil_name = dx_coil.name.get
  dx_coilsys_name = "#{dx_coil_name} CoilSystem"

  # Heating Coil
  htg_coil = nil
  supplyComponents.each do |equip|
    if equip.to_CoilHeatingGas.is_initialized
      htg_coil = equip.to_CoilHeatingGas.get
    elsif equip.to_CoilHeatingElectric.is_initialized
      htg_coil = equip.to_CoilHeatingElectric.get
    elsif equip.to_CoilHeatingWater.is_initialized
      htg_coil = equip.to_CoilHeatingWater.get
    end
  end
  if htg_coil.nil?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: No heating coil found, cannot apply DX fan/economizer control.")
    return false
  end
  htg_coil_name = htg_coil.name.get

  # Create an economizer maximum OA fraction schedule with
  # a maximum of 70% to reflect damper leakage per PNNL
  max_oa_sch_name = "#{snc}maxOASch"
  max_oa_sch = OpenStudio::Model::ScheduleRuleset.new(model)
  max_oa_sch.setName(max_oa_sch_name)
  max_oa_sch.defaultDaySchedule.setName("#{max_oa_sch_name}Default")
  max_oa_sch.defaultDaySchedule.addValue(OpenStudio::Time.new(0, 24, 0, 0), 0.7)
  oa_control.setMaximumFractionofOutdoorAirSchedule(max_oa_sch)

  ems = "

  ! Sensors

  EnergyManagementSystem:Sensor,
    #{snc}OASch,
    #{min_oa_sch_name},         !- Output:Variable or Output:Meter Index Key Name,
    Schedule Value;          !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{zn_name_clean}Temp,
    #{zone_air_node_name},  !- Output:Variable or Output:Meter Index Key Name
    System Node Temperature; !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}OAFlowMass,
    #{oa_node_name}, !- Output:Variable or Output:Meter Index Key Name
    System Node Mass Flow Rate;  !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}HeatingRTF,
    #{htg_coil_name},        !- Output:Variable or Output:Meter Index Key Name
    Heating Coil Runtime Fraction;  !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}RTF,
    #{dx_coil_name}, !- Output:Variable or Output:Meter Index Key Name
    Cooling Coil Runtime Fraction;  !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}SpeedRatio,
    #{dx_coilsys_name},        !- Output:Variable or Output:Meter Index Key Name
    Coil System Compressor Speed Ratio;  !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}DATRqd,
    #{sup_out_node_name},  !- Output:Variable or Output:Meter Index Key Name
    System Node Setpoint Temperature;  !- Output:Variable or Output:Meter Name

  EnergyManagementSystem:Sensor,
    #{snc}EconoStatus,
    #{sn},              !- Output:Variable or Output:Meter Index Key Name
    Air System Outdoor Air Economizer Status;  !- Output:Variable or Output:Meter Name

  ! Internal Variables

  EnergyManagementSystem:InternalVariable,
    #{snc}FanDesignPressure,
    #{fan_name},          !- Internal Data Index Key Name
    Fan Nominal Pressure Rise;  !- Internal Data Type

  EnergyManagementSystem:InternalVariable,
    #{snc}DesignFlowMass,
    #{oa_control_name},!- Internal Data Index Key Name
    Outdoor Air Controller Maximum Mass Flow Rate;  !- Internal Data Type

  EnergyManagementSystem:InternalVariable,
    #{snc}OADesignMass,
    #{oa_control_name},!- Internal Data Index Key Name
    Outdoor Air Controller Minimum Mass Flow Rate;  !- Internal Data Type

  ! Actuators

  EnergyManagementSystem:Actuator,
    #{snc}FanPressure,
    #{fan_name},          !- Actuated Component Unique Name
    Fan,                     !- Actuated Component Type
    Fan Pressure Rise;       !- Actuated Component Control Type

  EnergyManagementSystem:Actuator,
    #{snc}TimestepEconEff,!- Name
    #{max_oa_sch_name},  !- Actuated Component Unique Name
    Schedule:Year,       !- Actuated Component Type
    Schedule Value;          !- Actuated Component Control Type

  EnergyManagementSystem:GlobalVariable,
    #{snc}FanPwrExp,   !- Erl Variable 1 Name
    #{snc}Stg1Spd,      !- Erl Variable 2 Name
    #{snc}Stg2Spd,      !- Erl Variable 3 Name
    #{snc}HeatSpeed,
    #{snc}VenSpeed,
    #{snc}NumberofStages;

  EnergyManagementSystem:Program,
    #{snc}EconomizerCTRLProg,
    SET #{snc}TimestepEconEff = 0.7,
    SET #{snc}MaxE = 0.7,
    SET #{snc}DATRqd = (#{snc}DATRqd*1.8)+32,
    SET OATF = (OATF*1.8)+32,
    SET OAwbF = (OAwbF*1.8)+32,
    IF #{snc}OAFlowMass > (#{snc}OADesignMass*#{snc}OASch),
    SET #{snc}EconoActive = 1,
    ELSE,
    SET #{snc}EconoActive = 0,
    ENDIF,
    SET #{snc}dTNeeded = 75-#{snc}DATRqd,
    SET #{snc}CoolDesdT = ((98*0.15)+(75*(1-0.15)))-55,
    SET #{snc}CoolLoad = #{snc}dTNeeded/ #{snc}CoolDesdT,
    IF #{snc}CoolLoad > 1,
    SET #{snc}CoolLoad = 1,
    ELSEIF #{snc}CoolLoad < 0,
    SET #{snc}CoolLoad = 0,
    ENDIF,
    IF #{snc}EconoActive == 1,
    SET #{snc}Stage = #{snc}NumberofStages,
    IF #{snc}Stage == 2,
    IF #{snc}CoolLoad < 0.6,
    SET #{snc}TimestepEconEff = #{snc}MaxE,
    ELSE,
    SET #{snc}ECOEff = 0-2.18919863612305,
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.674461284910428*#{snc}CoolLoad),
    SET #{snc}ECOEff = #{snc}ECOEff+(0.000459106275872404*(OATF^2)),
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.00000484778537945252*(OATF^3)),
    SET #{snc}ECOEff = #{snc}ECOEff+(0.182915713033586*OAwbF),
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.00382838660261133*(OAwbF^2)),
    SET #{snc}ECOEff = #{snc}ECOEff+(0.0000255567460240583*(OAwbF^3)),
    SET #{snc}TimestepEconEff = #{snc}ECOEff,
    ENDIF,
    ELSE,
    SET #{snc}ECOEff = 2.36337942464462,
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.409939515512619*#{snc}CoolLoad),
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.0565205596792225*OAwbF),
    SET #{snc}ECOEff = #{snc}ECOEff+(0-0.0000632612294169389*(OATF^2)),
    SET #{snc}TimestepEconEff = #{snc}ECOEff+(0.000571724868775081*(OAwbF^2)),
    ENDIF,
    IF #{snc}TimestepEconEff > #{snc}MaxE,
    SET #{snc}TimestepEconEff = #{snc}MaxE,
    ELSEIF #{snc}TimestepEconEff < (#{snc}OADesignMass*#{snc}OASch),
    SET #{snc}TimestepEconEff = (#{snc}OADesignMass*#{snc}OASch),
    ENDIF,
    ENDIF;

  EnergyManagementSystem:Program,
    #{snc}SetFanPar,
    IF #{snc}NumberofStages == 1,
    Return,
    ENDIF,
    SET #{snc}FanPwrExp = 2.2,
    SET #{snc}OAFrac = #{snc}OAFlowMass/#{snc}DesignFlowMass,
    IF  #{snc}OAFrac < 0.66,
    SET #{snc}VenSpeed = 0.66,
    SET #{snc}Stg1Spd = 0.66,
    ELSE,
    SET #{snc}VenSpeed = #{snc}OAFrac,
    SET #{snc}Stg1Spd = #{snc}OAFrac,
    ENDIF,
    SET #{snc}Stg2Spd = 1.0,
    SET #{snc}HeatSpeed = 1.0;

  EnergyManagementSystem:Program,
    #{snc}FanControl,
    IF #{snc}NumberofStages == 1,
    Return,
    ENDIF,
    IF #{snc}HeatingRTF > 0,
    SET #{snc}Heating = #{snc}HeatingRTF,
    SET #{snc}Ven = 1-#{snc}HeatingRTF,
    SET #{snc}Eco = 0,
    SET #{snc}Stage1 = 0,
    SET #{snc}Stage2 = 0,
    ELSE,
    SET #{snc}Heating = 0,
    SET #{snc}EcoSpeed = #{snc}VenSpeed,
    IF #{snc}SpeedRatio == 0,
    IF #{snc}RTF > 0,
    SET #{snc}Stage1 = #{snc}RTF,
    SET #{snc}Stage2 = 0,
    SET #{snc}Ven = 1-#{snc}RTF,
    SET #{snc}Eco = 0,
    IF #{snc}OAFlowMass > (#{snc}OADesignMass*#{snc}OASch),
    SET #{snc}Stg1Spd = 1.0,
    ENDIF,
    ELSE,
    SET #{snc}Stage1 = 0,
    SET #{snc}Stage2 = 0,
    IF #{snc}OAFlowMass > (#{snc}OADesignMass*#{snc}OASch),
    SET #{snc}Eco = 1.0,
    SET #{snc}Ven = 0,
    !Calculate the expected discharge air temperature if the system runs at its low speed
    SET #{snc}ExpDAT = #{snc}DATRqd-(1-#{snc}VenSpeed)*#{zn_name_clean}Temp,
    SET #{snc}ExpDAT = #{snc}ExpDAT/#{snc}VenSpeed,
    IF OATF > #{snc}ExpDAT,
    SET #{snc}EcoSpeed = #{snc}Stg2Spd,
    ENDIF,
    ELSE,
    SET #{snc}Eco = 0,
    SET #{snc}Ven = 1.0,
    ENDIF,
    ENDIF,
    ELSE,
    SET #{snc}Stage1 = 1-#{snc}SpeedRatio,
    SET #{snc}Stage2 = #{snc}SpeedRatio,
    SET #{snc}Ven = 0,
    SET #{snc}Eco = 0,
    IF #{snc}OAFlowMass > (#{snc}OADesignMass*#{snc}OASch),
    SET #{snc}Stg1Spd = 1.0,
    ENDIF,
    ENDIF,
    ENDIF,
    ! For each mode, (percent time in mode)*(fanSpeer^PwrExp) is the contribution to weighted fan power over time step
    SET #{snc}FPR = #{snc}Ven*(#{snc}VenSpeed ^ #{snc}FanPwrExp),
    SET #{snc}FPR = #{snc}FPR+#{snc}Eco*(#{snc}EcoSpeed^#{snc}FanPwrExp),
    SET #{snc}FPR1 = #{snc}Stage1*(#{snc}Stg1Spd^#{snc}FanPwrExp),
    SET #{snc}FPR = #{snc}FPR+#{snc}FPR1,
    SET #{snc}FPR2 = #{snc}Stage2*(#{snc}Stg2Spd^#{snc}FanPwrExp),
    SET #{snc}FPR = #{snc}FPR+#{snc}FPR2,
    SET #{snc}FPR3 = #{snc}Heating*(#{snc}HeatSpeed^#{snc}FanPwrExp),
    SET #{snc}FanPwrRatio = #{snc}FPR+ #{snc}FPR3,
    ! system fan power is directly proportional to static pressure, so this change linearly adjusts fan energy for speed control
    SET #{snc}FanPressure = #{snc}FanDesignPressure*#{snc}FanPwrRatio;

  EnergyManagementSystem:Program,
    #{snc}SetNumberofStages,
    SET #{snc}NumberofStages =  #{num_stages};

  EnergyManagementSystem:ProgramCallingManager,
    #{snc}SetNumberofStagesCallingManager,
    BeginNewEnvironment,
    #{snc}SetNumberofStages;  !- Program Name 1

  EnergyManagementSystem:ProgramCallingManager,
    #{snc}ECOManager,
    InsideHVACSystemIterationLoop,  !- EnergyPlus Model Calling Point
    #{snc}EconomizerCTRLProg;  !- Program Name 1

  EnergyManagementSystem:ProgramCallingManager,
    #{snc}FanParametermanager,
    BeginNewEnvironment,
    #{snc}SetFanPar;

  EnergyManagementSystem:ProgramCallingManager,
    #{snc}FanMainManager,
    BeginTimestepBeforePredictor,
    #{snc}FanControl;

  "

  # Write the ems out
  # File.open("#{Dir.pwd}/#{snc}_ems.idf", 'w') do |file|
  # file.puts ems
  # end

  return ems
end

#apply_standard_controls(template, climate_zone) ⇒ Bool

TODO:

optimum start

TODO:

night damper shutoff

TODO:

nightcycle control

TODO:

night fan shutoff

Apply all standard required controls to the airloop

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if successful, false if not



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 44

def apply_standard_controls(template, climate_zone)
  # Energy Recovery Ventilation
  if energy_recovery_ventilator_required?(template, climate_zone)
    apply_energy_recovery_ventilator(template)
  end

  # Economizers
  apply_economizer_limits(template, climate_zone)
  apply_economizer_integration(template, climate_zone)

  # Multizone VAV Systems
  if multizone_vav_system?

    # VAV Reheat Control
    apply_vav_damper_action(template)

    # Multizone VAV Optimization
    # This rule does not apply to two hospital and one outpatient systems (TODO add hospital two systems as exception)
    unless name.to_s.include? 'Outpatient F1'
      if multizone_vav_optimization_required?(template, climate_zone)
        enable_multizone_vav_optimization
      else
        disable_multizone_vav_optimization
      end
    end

    # Static Pressure Reset
    # assume no systems have DDC control of VAV terminals
    has_ddc = false
    spr_req = static_pressure_reset_required?(template, has_ddc)
    supply_return_exhaust_relief_fans.each do |fan|
      if fan.to_FanVariableVolume.is_initialized
        plr_req = fan.part_load_fan_power_limitation?(template)
        # Part Load Fan Pressure Control & Static Pressure Reset
        if plr_req && spr_req
          fan.set_control_type('Multi Zone VAV with VSD and Static Pressure Reset')
        # Part Load Fan Pressure Control only
        elsif plr_req && !spr_req
          fan.set_control_type('Multi Zone VAV with VSD and Fixed SP Setpoint')
        # Static Pressure Reset only
        elsif !plr_req && spr_req
          fan.set_control_type('Multi Zone VAV with VSD and Fixed SP Setpoint')
        # No Control Required
        else
          fan.set_control_type('Multi Zone VAV with AF or BI Riding Curve')
        end
      else
        OpenStudio.logFree(OpenStudio::Error, 'openstudio.standards.AirLoopHVAC', "For #{name}: there is a constant volume fan on a multizone vav system.  Cannot apply static pressure reset controls.")
      end
    end

  end

  # Single zone systems
  if self.thermalZones.size == 1
    supply_return_exhaust_relief_fans.each do |fan|
      if fan.to_FanVariableVolume.is_initialized
        fan.set_control_type('Single Zone VAV Fan')
      end
    end
  # self.apply_single_zone_controls(template, climate_zone)
  end

  # DCV
  if demand_control_ventilation_required?(template, climate_zone)
    enable_demand_control_ventilation(template, climate_zone)
  end

  # SAT reset
  # TODO Prototype buildings use OAT-based SAT reset,
  # but PRM RM suggests Warmest zone based SAT reset.
  if supply_air_temperature_reset_required?(template, climate_zone)
    enable_supply_air_temperature_reset_warmest_zone(template)
  end

  # Unoccupied shutdown
  if unoccupied_fan_shutoff_required?(template)
    enable_unoccupied_fan_shutoff
  else
    setAvailabilitySchedule(model.alwaysOnDiscreteSchedule)
  end

  # Motorized OA damper
  if motorized_oa_damper_required?(template, climate_zone)
    # Assume that the availability schedule has already been
    # set to reflect occupancy and use this for the OA damper.
    add_motorized_oa_damper(0.15, availabilitySchedule)
  else
    remove_motorized_oa_damper
  end

  # TODO: Optimum Start
  # for systems exceeding 10,000 cfm
  # Don't think that OS will be able to do this.
  # OS currently only allows 1 availability manager
  # at a time on an AirLoopHVAC.  If we add an
  # AvailabilityManager:OptimumStart, it
  # will replace the AvailabilityManager:NightCycle.
end

#apply_vav_damper_action(template) ⇒ Bool

TODO:

see if this impacts the sizing run.

Set the VAV damper control to single maximum or dual maximum control depending on the standard.

Returns:

  • (Bool)

    Returns true if successful, false if not



2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2610

def apply_vav_damper_action(template)
  damper_action = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004'
    damper_action = 'Single Maximum'
  when '90.1-2007', '90.1-2010', '90.1-2013', 'NECB 2011'
    damper_action = 'Dual Maximum'
  end

  # Interpret this as an EnergyPlus input
  damper_action_eplus = nil
  if damper_action == 'Single Maximum'
    damper_action_eplus = 'Normal'
  elsif damper_action == 'Dual Maximum'
    damper_action_eplus = 'Reverse'
  end

  # Set the control for any VAV reheat terminals
  # on this airloop.
  control_type_set = false
  demandComponents.each do |equip|
    if equip.to_AirTerminalSingleDuctVAVReheat.is_initialized
      term = equip.to_AirTerminalSingleDuctVAVReheat.get
      # Dual maximum only applies to terminals with HW reheat coils
      if damper_action == 'Dual Maximum'
        if term.reheatCoil.to_CoilHeatingWater.is_initialized
          term.setDamperHeatingAction(damper_action_eplus)
          control_type_set = true
        end
      else
        term.setDamperHeatingAction(damper_action_eplus)
        control_type_set = true
      end
    end
  end

  if control_type_set
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: VAV damper action was set to #{damper_action} control.")
  end

  return true
end

#applySizingValuesObject

Takes the values calculated by the EnergyPlus sizing routines and puts them into this object model in place of the autosized fields. Must have previously completed a run with sql output for this to work.



13
14
15
16
17
18
19
20
# File 'lib/openstudio-standards/hvac_sizing/Siz.AirLoopHVAC.rb', line 13

def applySizingValues

  design_supply_air_flow_rate = self.autosizedDesignSupplyAirFlowRate
  if design_supply_air_flow_rate.is_initialized
    self.setDesignSupplyAirFlowRate(design_supply_air_flow_rate.get) 
  end
      
end

#autosizeObject

Sets all auto-sizeable fields to autosize



6
7
8
# File 'lib/openstudio-standards/hvac_sizing/Siz.AirLoopHVAC.rb', line 6

def autosize
  self.autosizeDesignSupplyAirFlowRate
end

#autosizedDesignSupplyAirFlowRateObject

returns the autosized design supply air flow rate as an optional double



23
24
25
26
27
# File 'lib/openstudio-standards/hvac_sizing/Siz.AirLoopHVAC.rb', line 23

def autosizedDesignSupplyAirFlowRate

  return self.model.getAutosizedValue(self, 'Design Supply Air Flow Rate', 'm3/s')
  
end

#data_center_area_servedDouble

TODO:

Add an is_data_center field to the

Determine how much data center area the airloop serves.

in m^2. standards space type spreadsheet instead of relying on the standards space type name to identify a data center.

Returns:

  • (Double)

    the area of data center is served,



3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3576

def data_center_area_served
  dc_area_m2 = 0.0

  thermalZones.each do |zone|
    zone.spaces.each do |space|
      # Skip spaces with no space type
      next if space.spaceType.empty?
      space_type = space.spaceType.get
      next if space_type.standardsSpaceType.empty?
      standards_space_type = space_type.standardsSpaceType.get
      # Counts as a data center if the name includes 'data'
      next unless standards_space_type.downcase.include?('data')
      dc_area_m2 += space.floorArea
    end
  end

  return dc_area_m2
end

#demand_control_ventilation_required?(template, climate_zone) ⇒ Bool

TODO:

Add exception logic for systems that serve multifamily, parking garage, warehouse

Determine if demand control ventilation (DCV) is required for this air loop.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2253

def demand_control_ventilation_required?(template, climate_zone)
  dcv_required = false

  # Not required by the old vintages
  if template == 'DOE Ref Pre-1980' || template == 'DOE Ref 1980-2004' || template == 'NECB 2011'
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{template} #{climate_zone}:  #{name}: DCV is not required for any system.")
    return dcv_required
  end

  # Not required for systems that require an ERV
  if energy_recovery?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: DCV is not required since the system has Energy Recovery.")
    return dcv_required
  end

  # OA flow limits
  min_oa_without_economizer_cfm = 0
  min_oa_with_economizer_cfm = 0
  case template
  when '90.1-2004'
    min_oa_without_economizer_cfm = 3000
    min_oa_with_economizer_cfm = 0
  when '90.1-2007', '90.1-2010'
    min_oa_without_economizer_cfm = 3000
    min_oa_with_economizer_cfm = 1200
  when '90.1-2013'
    min_oa_without_economizer_cfm = 3000
    min_oa_with_economizer_cfm = 750
  end

  # Get the min OA flow rate
  oa_flow_m3_per_s = 0
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    if controller_oa.minimumOutdoorAirFlowRate.is_initialized
      oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
    elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
      oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
    end
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, DCV not applicable because it has no OA intake.")
    return dcv_required
  end
  oa_flow_cfm = OpenStudio.convert(oa_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Check for min OA without an economizer OR has economizer
  if oa_flow_cfm < min_oa_without_economizer_cfm && economizer? == false
    # Message if doesn't pass OA limit
    if oa_flow_cfm < min_oa_without_economizer_cfm
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: DCV is not required since the system min oa flow is #{oa_flow_cfm.round} cfm, less than the minimum of #{min_oa_without_economizer_cfm.round} cfm.")
    end
    # Message if doesn't have economizer
    if economizer? == false
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: DCV is not required since the system does not have an economizer.")
    end
    return dcv_required
  end

  # If has economizer, cfm limit is lower
  if oa_flow_cfm < min_oa_with_economizer_cfm && economizer?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: DCV is not required since the system has an economizer, but the min oa flow is #{oa_flow_cfm.round} cfm, less than the minimum of #{min_oa_with_economizer_cfm.round} cfm for systems with an economizer.")
    return dcv_required
  end

  # Check area and density limits
  # for all of zones on the loop
  any_zones_req_dcv = false
  thermalZones.sort.each do |zone|
    if zone.demand_control_ventilation_required?(template, climate_zone)
      any_zones_req_dcv = true
      break
    end
  end
  unless any_zones_req_dcv
    return dcv_required
  end

  # If here, DCV is required
  dcv_required = true

  return dcv_required
end

#disable_multizone_vav_optimizationBool

Disable multizone vav optimization by changing the Outdoor Air Method in the Controller:MechanicalVentilation object to ‘ZoneSum’

Returns:

  • (Bool)

    Returns true if required, false if not.



1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1982

def disable_multizone_vav_optimization
  # Disable multizone vav optimization
  # at each timestep.
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
    controller_mv.setSystemOutdoorAirMethod('ZoneSum')
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}, cannot disable multizone vav optimization because the system has no OA intake.")
    return false
  end
end

#economizer?Bool

Determine if the system has an economizer

Returns:

  • (Bool)

    Returns true if required, false if not.



2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2515

def economizer?
  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  # Return false if no economizer is present
  if economizer_type == 'NoEconomizer'
    return false
  else
    return true
  end
end

#economizer_required?(template, climate_zone) ⇒ Bool

Determine whether or not this system is required to have an economizer.

‘ASHRAE 169-2006-3A’, ‘ASHRAE 169-2006-3B’, ‘ASHRAE 169-2006-3C’, ‘ASHRAE 169-2006-4A’, ‘ASHRAE 169-2006-4B’, ‘ASHRAE 169-2006-4C’, ‘ASHRAE 169-2006-5A’, ‘ASHRAE 169-2006-5B’, ‘ASHRAE 169-2006-5C’, ‘ASHRAE 169-2006-6A’, ‘ASHRAE 169-2006-6B’, ‘ASHRAE 169-2006-7A’, ‘ASHRAE 169-2006-7B’, ‘ASHRAE 169-2006-8A’, ‘ASHRAE 169-2006-8B’

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if an economizer is required, false if not



674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 674

def economizer_required?(template, climate_zone)
  economizer_required = false

  return economizer_required if name.to_s.include? 'Outpatient F1'

  # A big number of btu per hr as the minimum requirement
  infinity_btu_per_hr = 999_999_999_999
  minimum_capacity_btu_per_hr = infinity_btu_per_hr

  # Determine if the airloop serves any computer rooms
  # / data centers, which changes the economizer.
  is_dc = false
  if data_center_area_served > 0
    is_dc = true
  end

  # Determine the minimum capacity that requires an economizer
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      minimum_capacity_btu_per_hr = infinity_btu_per_hr # No requirement
    when 'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        'ASHRAE 169-2006-7A',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      minimum_capacity_btu_per_hr = 35_000
    when 'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-5C',
        'ASHRAE 169-2006-6B'
      minimum_capacity_btu_per_hr = 65_000
    end
  when '90.1-2010', '90.1-2013'
    if is_dc # data center / computer room
      case climate_zone
      when 'ASHRAE 169-2006-1A',
          'ASHRAE 169-2006-1B',
          'ASHRAE 169-2006-2A',
          'ASHRAE 169-2006-3A',
          'ASHRAE 169-2006-4A'
        minimum_capacity_btu_per_hr = infinity_btu_per_hr # No requirement
      when 'ASHRAE 169-2006-2B',
          'ASHRAE 169-2006-5A',
          'ASHRAE 169-2006-6A',
          'ASHRAE 169-2006-7A',
          'ASHRAE 169-2006-7B',
          'ASHRAE 169-2006-8A',
          'ASHRAE 169-2006-8B'
        minimum_capacity_btu_per_hr = 135_000
      when 'ASHRAE 169-2006-3B',
          'ASHRAE 169-2006-3C',
          'ASHRAE 169-2006-4B',
          'ASHRAE 169-2006-4C',
          'ASHRAE 169-2006-5B',
          'ASHRAE 169-2006-5C',
          'ASHRAE 169-2006-6B'
        minimum_capacity_btu_per_hr = 65_000
      end
    else
      case climate_zone
      when 'ASHRAE 169-2006-1A',
          'ASHRAE 169-2006-1B'
        minimum_capacity_btu_per_hr = infinity_btu_per_hr # No requirement
      when 'ASHRAE 169-2006-2A',
          'ASHRAE 169-2006-3A',
          'ASHRAE 169-2006-4A',
          'ASHRAE 169-2006-2B',
          'ASHRAE 169-2006-5A',
          'ASHRAE 169-2006-6A',
          'ASHRAE 169-2006-7A',
          'ASHRAE 169-2006-7B',
          'ASHRAE 169-2006-8A',
          'ASHRAE 169-2006-8B',
          'ASHRAE 169-2006-3B',
          'ASHRAE 169-2006-3C',
          'ASHRAE 169-2006-4B',
          'ASHRAE 169-2006-4C',
          'ASHRAE 169-2006-5B',
          'ASHRAE 169-2006-5C',
          'ASHRAE 169-2006-6B'
        minimum_capacity_btu_per_hr = 54_000
      end
    end
  when 'NECB 2011'
    minimum_capacity_btu_per_hr = 68_243 # NECB requires economizer for cooling cap > 20 kW
  end

  # Check whether the system requires an economizer by comparing
  # the system capacity to the minimum capacity.
  total_cooling_capacity_w = total_cooling_capacity
  total_cooling_capacity_btu_per_hr = OpenStudio.convert(total_cooling_capacity_w, 'W', 'Btu/hr').get
  if total_cooling_capacity_btu_per_hr >= minimum_capacity_btu_per_hr
    if is_dc
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name} requires an economizer because the total cooling capacity of #{total_cooling_capacity_btu_per_hr.round} Btu/hr exceeds the minimum capacity of #{minimum_capacity_btu_per_hr.round} Btu/hr for data centers.")
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name} requires an economizer because the total cooling capacity of #{total_cooling_capacity_btu_per_hr.round} Btu/hr exceeds the minimum capacity of #{minimum_capacity_btu_per_hr.round} Btu/hr.")
    end
    economizer_required = true
  else
    if is_dc
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name} does not require an economizer because the total cooling capacity of #{total_cooling_capacity_btu_per_hr.round} Btu/hr is less than the minimum capacity of #{minimum_capacity_btu_per_hr.round} Btu/hr for data centers.")
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name} does not require an economizer because the total cooling capacity of #{total_cooling_capacity_btu_per_hr.round} Btu/hr is less than the minimum capacity of #{minimum_capacity_btu_per_hr.round} Btu/hr.")
    end
  end

  return economizer_required
end

#economizer_type_allowable?(template, climate_zone) ⇒ Bool

Check the economizer type currently specified in the ControllerOutdoorAir object on this air loop is acceptable per the standard.

Returns false if the economizer type is not allowable.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if allowable, if the system has no economizer or no OA system.



1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1244

def economizer_type_allowable?(template, climate_zone)
  # EnergyPlus economizer types
  # 'NoEconomizer'
  # 'FixedDryBulb'
  # 'FixedEnthalpy'
  # 'DifferentialDryBulb'
  # 'DifferentialEnthalpy'
  # 'FixedDewPointAndDryBulb'
  # 'ElectronicEnthalpy'
  # 'DifferentialDryBulbAndEnthalpy'

  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return true # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir
  economizer_type = oa_control.getEconomizerControlType

  # Return true if no economizer is present
  if economizer_type == 'NoEconomizer'
    return true
  end

  # Determine the minimum capacity that requires an economizer
  prohibited_types = []
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'
    case climate_zone
    when 'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-6B',
        'ASHRAE 169-2006-7A',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      prohibited_types = ['FixedEnthalpy']
    when
      'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      prohibited_types = ['DifferentialDryBulb']
    when
      'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        prohibited_types = []
    end
  when '90.1-2010', '90.1-2013'
    case climate_zone
    when 'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-6B',
        'ASHRAE 169-2006-7A',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      prohibited_types = ['FixedEnthalpy']
    when
      'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      prohibited_types = ['FixedDryBulb', 'DifferentialDryBulb']
    when
      'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        prohibited_types = []
    end
  end

  # Check if the specified type is allowed
  economizer_type_allowed = true
  if prohibited_types.include?(economizer_type)
    economizer_type_allowed = false
  end

  return economizer_type_allowed
end

#enable_demand_control_ventilation(template, climate_zone) ⇒ Bool

Enable demand control ventilation (DCV) for this air loop. Zones on this loop that require DCV preserve both per-area and per-person OA reqs. Other zones have OA reqs converted to per-area values only so that DCV won’t impact these zones.

Returns:

  • (Bool)

    Returns true if required, false if not.



2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2344

def enable_demand_control_ventilation(template, climate_zone)
  # Get the OA intake
  controller_oa = nil
  controller_mv = nil
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
    if controller_mv.demandControlledVentilation == true
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: DCV was already enabled.")
      return true
    end
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}: Could not enable DCV since the system has no OA intake.")
    return false
  end

  # Change the min flow rate in the controller outdoor air
  controller_oa.setMinimumOutdoorAirFlowRate(0.0)

  # Enable DCV in the controller mechanical ventilation
  controller_mv.setDemandControlledVentilation(true)

  # Zones that require DCV preserve
  # both per-area and per-person OA reqs.
  # Other zones have OA reqs converted
  # to per-area values only so that DCV
  thermalZones.sort.each do |zone|
    if zone.demand_control_ventilation_required?(template, climate_zone)
      zone.convert_oa_req_to_per_area
    end
  end

  return true
end

#enable_multizone_vav_optimizationBool

Enable multizone vav optimization by changing the Outdoor Air Method in the Controller:MechanicalVentilation object to ‘VentilationRateProcedure’

Returns:

  • (Bool)

    Returns true if required, false if not.



1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1964

def enable_multizone_vav_optimization
  # Enable multizone vav optimization
  # at each timestep.
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
    controller_mv.setSystemOutdoorAirMethod('VentilationRateProcedure')
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}, cannot enable multizone vav optimization because the system has no OA intake.")
    return false
  end
end

#enable_supply_air_temperature_reset_outdoor_temperatureBool

Enable supply air temperature (SAT) reset based on outdoor air conditions. SAT will be kept at the current design temperature when outdoor air is above 70F, increased by 5F when outdoor air is below 50F, and reset linearly when outdoor air is between 50F and 70F.

Returns:

  • (Bool)

    Returns true if successful, false if not.



2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2473

def enable_supply_air_temperature_reset_outdoor_temperature
  # for AHU1 in Outpatient, SAT is 52F constant, no reset
  return true if name.get == 'PVAV Outpatient F1'

  # Get the current setpoint and calculate
  # the new setpoint.
  sizing_system = sizingSystem
  sat_at_hi_oat_c = sizing_system.centralCoolingDesignSupplyAirTemperature
  sat_at_hi_oat_f = OpenStudio.convert(sat_at_hi_oat_c, 'C', 'F').get
  # 5F increase when it's cold outside,
  # and therefore less cooling capacity is likely required.
  increase_f = 5.0
  sat_at_lo_oat_f = sat_at_hi_oat_f + increase_f
  sat_at_lo_oat_c = OpenStudio.convert(sat_at_lo_oat_f, 'F', 'C').get

  # Define the high and low outdoor air temperatures
  lo_oat_f = 50
  lo_oat_c = OpenStudio.convert(lo_oat_f, 'F', 'C').get
  hi_oat_f = 70
  hi_oat_c = OpenStudio.convert(hi_oat_f, 'F', 'C').get

  # Create a setpoint manager
  sat_oa_reset = OpenStudio::Model::SetpointManagerOutdoorAirReset.new(model)
  sat_oa_reset.setName("#{name} SAT Reset")
  sat_oa_reset.setControlVariable('Temperature')
  sat_oa_reset.setSetpointatOutdoorLowTemperature(sat_at_lo_oat_c)
  sat_oa_reset.setOutdoorLowTemperature(lo_oat_c)
  sat_oa_reset.setSetpointatOutdoorHighTemperature(sat_at_hi_oat_c)
  sat_oa_reset.setOutdoorHighTemperature(hi_oat_c)

  # Attach the setpoint manager to the
  # supply outlet node of the system.
  sat_oa_reset.addToNode(supplyOutletNode)

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Supply air temperature reset was enabled.  When OAT > #{hi_oat_f.round}F, SAT is #{sat_at_hi_oat_f.round}F.  When OAT < #{lo_oat_f.round}F, SAT is #{sat_at_lo_oat_f.round}F.  It varies linearly in between these points.")

  return true
end

#enable_supply_air_temperature_reset_warmest_zone(template) ⇒ Bool

Enable supply air temperature (SAT) reset based on the cooling demand of the warmest zone.

Parameters:

  • template (String)

    valid choices: ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Bool)

    Returns true if successful, false if not.



2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2429

def enable_supply_air_temperature_reset_warmest_zone(template)
  # Get the current setpoint and calculate
  # the new setpoint.
  sizing_system = sizingSystem
  design_sat_c = sizing_system.centralCoolingDesignSupplyAirTemperature
  design_sat_f = OpenStudio.convert(design_sat_c, 'C', 'F').get

  case template
  when '90.1-2004'
    # 2004 has a 10F sat reset
    sat_reset_r = 10
  when '90.1-2007', '90.1-2010', '90.1-2013'
    sat_reset_r = 5
  end

  sat_reset_k = OpenStudio.convert(sat_reset_r, 'R', 'K').get

  max_sat_f = design_sat_f + sat_reset_r
  max_sat_c = design_sat_c + sat_reset_k

  # Create a setpoint manager
  sat_warmest_reset = OpenStudio::Model::SetpointManagerWarmest.new(model)
  sat_warmest_reset.setName("#{name} SAT Warmest Reset")
  sat_warmest_reset.setStrategy('MaximumTemperature')
  sat_warmest_reset.setMinimumSetpointTemperature(design_sat_c)
  sat_warmest_reset.setMaximumSetpointTemperature(max_sat_c)

  # Attach the setpoint manager to the
  # supply outlet node of the system.
  sat_warmest_reset.addToNode(supplyOutletNode)

  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Supply air temperature reset was enabled using a SPM Warmest with a min SAT of #{design_sat_f.round}F and a max SAT of #{max_sat_f.round}F.")

  return true
end

#enable_unoccupied_fan_shutoff(min_occ_pct = 0.15) ⇒ Bool

Shut off the system during unoccupied periods. During these times, systems will cycle on briefly if temperature drifts below setpoint. For systems with fan-powered terminals, only the terminal fans will cycle on. If the system already has a schedule other than Always-On, no change will be made. If the system has an Always-On schedule assigned, a new schedule will be created. In this case, occupied is defined as the total percent occupancy for the loop for all zones served.

the system will be considered unoccupied.

Parameters:

  • min_occ_pct (Double) (defaults to: 0.15)

    the fractional value below which

Returns:

  • (Bool)

    true if successful, false if not



3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3474

def enable_unoccupied_fan_shutoff(min_occ_pct = 0.15)
  # Set the system to night cycle
  night_cycle_type = 'CycleOnAny'
  # For VAV with PFP boxes, cycle zone fans only
  unless demandComponents('OS:AirTerminal:SingleDuct:ParallelPIU:Reheat'.to_IddObjectType).empty?
    night_cycle_type = 'CycleOnAnyZoneFansOnly'
  end
  setNightCycleControlType(night_cycle_type)

  # Check if already using a schedule other than always on
  avail_sch = availabilitySchedule
  unless avail_sch == model.alwaysOnDiscreteSchedule
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Availability schedule is already set to #{avail_sch.name}.  Will assume this includes unoccupied shut down; no changes will be made.")
    return true
  end

  # Get the airloop occupancy schedule
  loop_occ_sch = get_occupancy_schedule(min_occ_pct)
  flh = loop_occ_sch.annual_equivalent_full_load_hrs
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Annual occupied hours = #{flh.round} hr/yr, assuming a #{min_occ_pct} occupancy threshold.  This schedule will be used as the HVAC operation schedule.")

  # Set HVAC availability schedule to follow occupancy
  setAvailabilitySchedule(loop_occ_sch)

  return true
end

#energy_recovery?Bool

Determine if the system has energy recovery already

Returns:

  • (Bool)

    Returns true if an ERV is present, false if not.



2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2584

def energy_recovery?
  has_erv = false

  # Get the OA system
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return has_erv # No OA system
  end

  # Find any ERV on the OA system
  oa_sys.oaComponents.each do |oa_comp|
    if oa_comp.to_HeatExchangerAirToAirSensibleAndLatent.is_initialized
      has_erv = true
    end
  end

  return has_erv
end

#energy_recovery_ventilator_required?(template, climate_zone) ⇒ Bool

TODO:

Add exception logic for systems serving parking garage, warehouse, or multifamily

Check if ERV is required on this airloop.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1341

def energy_recovery_ventilator_required?(template, climate_zone)
  # ERV Not Applicable for AHUs that serve
  # parking garage, warehouse, or multifamily
  # if space_types_served_names.include?('PNNL_Asset_Rating_Apartment_Space_Type') ||
  # space_types_served_names.include?('PNNL_Asset_Rating_LowRiseApartment_Space_Type') ||
  # space_types_served_names.include?('PNNL_Asset_Rating_ParkingGarage_Space_Type') ||
  # space_types_served_names.include?('PNNL_Asset_Rating_Warehouse_Space_Type')
  # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{self.name}, ERV not applicable because it because it serves parking garage, warehouse, or multifamily.")
  # return false
  # end

  erv_required = nil
  # ERV not applicable for medical AHUs (AHU1 in Outpatient), per AIA 2001 - 7.31.D2.
  if name.to_s.include? 'Outpatient F1'
    erv_required = false
    return erv_required
  end

  # ERV not applicable for medical AHUs, per AIA 2001 - 7.31.D2.
  if name.to_s.include? 'VAV_ER'
    erv_required = false
    return erv_required
  elsif name.to_s.include? 'VAV_OR'
    erv_required = false
    return erv_required
  end
  case template
  when '90.1-2004', '90.1-2007'
    if name.to_s.include? 'VAV_ICU'
      erv_required = false
      return erv_required
    elsif name.to_s.include? 'VAV_PATRMS'
      erv_required = false
      return erv_required
    end
  end

  # ERV Not Applicable for AHUs that have DCV
  # or that have no OA intake.
  controller_oa = nil
  controller_mv = nil
  oa_system = nil
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    controller_mv = controller_oa.controllerMechanicalVentilation
    if controller_mv.demandControlledVentilation == true
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV not applicable because DCV enabled.")
      return false
    end
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV not applicable because it has no OA intake.")
    return false
  end

  # Get the AHU design supply air flow rate
  dsn_flow_m3_per_s = nil
  if designSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = designSupplyAirFlowRate.get
  elsif autosizedDesignSupplyAirFlowRate.is_initialized
    dsn_flow_m3_per_s = autosizedDesignSupplyAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} design supply air flow rate is not available, cannot apply efficiency standard.")
    return false
  end
  dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Get the minimum OA flow rate
  min_oa_flow_m3_per_s = nil
  if controller_oa.minimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
  elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
    min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.")
    return false
  end
  min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Calculate the percent OA at design airflow
  pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s

  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'
    erv_cfm = nil # Not required
  when '90.1-2004', '90.1-2007'
    erv_cfm = if pct_oa < 0.7
                nil
              else
                # @Todo: Add exceptions (eg: e. cooling systems in climate zones 3C, 4C, 5B, 5C, 6B, 7 and 8 | d. Heating systems in climate zones 1 to 3)
                5000
              end
  when '90.1-2010'
    # Table 6.5.6.1
    case climate_zone
    when 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B'
      if pct_oa < 0.3
        erv_cfm = nil
      elsif pct_oa >= 0.3 && pct_oa < 0.4
        erv_cfm = nil
      elsif pct_oa >= 0.4 && pct_oa < 0.5
        erv_cfm = nil
      elsif pct_oa >= 0.5 && pct_oa < 0.6
        erv_cfm = nil
      elsif pct_oa >= 0.6 && pct_oa < 0.7
        erv_cfm = nil
      elsif pct_oa >= 0.7 && pct_oa < 0.8
        erv_cfm = 5000
      elsif pct_oa >= 0.8
        erv_cfm = 5000
      end
    when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-5C'
      if pct_oa < 0.3
        erv_cfm = nil
      elsif pct_oa >= 0.3 && pct_oa < 0.4
        erv_cfm = nil
      elsif pct_oa >= 0.4 && pct_oa < 0.5
        erv_cfm = nil
      elsif pct_oa >= 0.5 && pct_oa < 0.6
        erv_cfm = 26_000
      elsif pct_oa >= 0.6 && pct_oa < 0.7
        erv_cfm = 12_000
      elsif pct_oa >= 0.7 && pct_oa < 0.8
        erv_cfm = 5000
      elsif pct_oa >= 0.8
        erv_cfm = 4000
      end
    when 'ASHRAE 169-2006-6B'
      if pct_oa < 0.3
        erv_cfm = nil
      elsif pct_oa >= 0.3 && pct_oa < 0.4
        erv_cfm = 11_000
      elsif pct_oa >= 0.4 && pct_oa < 0.5
        erv_cfm = 5500
      elsif pct_oa >= 0.5 && pct_oa < 0.6
        erv_cfm = 4500
      elsif pct_oa >= 0.6 && pct_oa < 0.7
        erv_cfm = 3500
      elsif pct_oa >= 0.7 && pct_oa < 0.8
        erv_cfm = 2500
      elsif pct_oa >= 0.8
        erv_cfm = 1500
      end
    when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A'
      if pct_oa < 0.3
        erv_cfm = nil
      elsif pct_oa >= 0.3 && pct_oa < 0.4
        erv_cfm = 5500
      elsif pct_oa >= 0.4 && pct_oa < 0.5
        erv_cfm = 4500
      elsif pct_oa >= 0.5 && pct_oa < 0.6
        erv_cfm = 3500
      elsif pct_oa >= 0.6 && pct_oa < 0.7
        erv_cfm = 2000
      elsif pct_oa >= 0.7 && pct_oa < 0.8
        erv_cfm = 1000
      elsif pct_oa >= 0.8
        erv_cfm = 0
      end
    when 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B'
      if pct_oa < 0.3
        erv_cfm = nil
      elsif pct_oa >= 0.3 && pct_oa < 0.4
        erv_cfm = 2500
      elsif pct_oa >= 0.4 && pct_oa < 0.5
        erv_cfm = 1000
      elsif pct_oa >= 0.5 && pct_oa < 0.6
        erv_cfm = 0
      elsif pct_oa >= 0.6 && pct_oa < 0.7
        erv_cfm = 0
      elsif pct_oa >= 0.7 && pct_oa < 0.8
        erv_cfm = 0
      elsif pct_oa >= 0.8
        erv_cfm = 0
      end
    end
  when '90.1-2013'
    # Calculate the number of system operating hours
    # based on the availability schedule.
    ann_op_hrs = 0.0
    avail_sch = availabilitySchedule
    if avail_sch == model.alwaysOnDiscreteSchedule
      ann_op_hrs = 8760.0
    elsif avail_sch.to_ScheduleRuleset.is_initialized
      avail_sch = avail_sch.to_ScheduleRuleset.get
      ann_op_hrs = avail_sch.annual_hours_above_value(0.0)
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}: could not determine annual operating hours. Assuming less than 8,000 for ERV determination.")
    end

    if ann_op_hrs < 8000.0
      # Table 6.5.6.1-1, less than 8000 hrs
      case climate_zone
      when 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-3C', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5B'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = nil
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = nil
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = nil
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = nil
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = nil
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = nil
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = nil
        elsif pct_oa >= 0.8
          erv_cfm = nil
        end
      when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-5C'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = nil
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = nil
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = nil
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = nil
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = 26_000
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = 12_000
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = 5000
        elsif pct_oa >= 0.8
          erv_cfm = 4000
        end
      when 'ASHRAE 169-2006-6B'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = 28_000
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = 26_500
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = 11_000
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = 5500
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = 4500
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = 3500
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = 2500
        elsif pct_oa >= 0.8
          erv_cfm = 1500
        end
      when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = 26_000
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = 16_000
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = 5500
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = 4500
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = 3500
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = 2000
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = 1000
        elsif pct_oa >= 0.8
          erv_cfm = 0
        end
      when 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = 4500
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = 4000
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = 2500
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = 1000
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = 0
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = 0
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = 0
        elsif pct_oa >= 0.8
          erv_cfm = 0
        end
      end
    else
      # Table 6.5.6.1-2, above 8000 hrs
      case climate_zone
      when 'ASHRAE 169-2006-3C'
        erv_cfm = nil
      when 'ASHRAE 169-2006-1B', 'ASHRAE 169-2006-2B', 'ASHRAE 169-2006-3B', 'ASHRAE 169-2006-4C', 'ASHRAE 169-2006-5C'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = nil
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = 19_500
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = 9000
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = 5000
        elsif pct_oa >= 0.5 && pct_oa < 0.6
          erv_cfm = 4000
        elsif pct_oa >= 0.6 && pct_oa < 0.7
          erv_cfm = 3000
        elsif pct_oa >= 0.7 && pct_oa < 0.8
          erv_cfm = 1500
        elsif pct_oa >= 0.8
          erv_cfm = 0
        end
      when 'ASHRAE 169-2006-1A', 'ASHRAE 169-2006-2A', 'ASHRAE 169-2006-3A', 'ASHRAE 169-2006-4B', 'ASHRAE 169-2006-5B'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1 && pct_oa < 0.2
          erv_cfm = 2500
        elsif pct_oa >= 0.2 && pct_oa < 0.3
          erv_cfm = 2000
        elsif pct_oa >= 0.3 && pct_oa < 0.4
          erv_cfm = 1000
        elsif pct_oa >= 0.4 && pct_oa < 0.5
          erv_cfm = 500
        elsif pct_oa >= 0.5
          erv_cfm = 0
        end
      when 'ASHRAE 169-2006-4A', 'ASHRAE 169-2006-5A', 'ASHRAE 169-2006-6A', 'ASHRAE 169-2006-6B', 'ASHRAE 169-2006-7A', 'ASHRAE 169-2006-7B', 'ASHRAE 169-2006-8A', 'ASHRAE 169-2006-8B'
        if pct_oa < 0.1
          erv_cfm = nil
        elsif pct_oa >= 0.1
          erv_cfm = 0
        end
      end
    end
  when 'NECB 2011'
    # The NECB 2011 requirement is that systems with an exhaust heat content > 150 kW require an HRV
    # The calculation for this is done below, to modify erv_required
    # erv_cfm set to nil here as placeholder, will lead to erv_required = false
    erv_cfm = nil
  end

  # Determine if an ERV is required
  # erv_required = nil
  if erv_cfm.nil?
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV not required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}.")
    erv_required = false
  elsif dsn_flow_cfm < erv_cfm
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV not required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}. Does not exceed minimum flow requirement of #{erv_cfm}cfm.")
    erv_required = false
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV required based on #{(pct_oa * 100).round}% OA flow, design supply air flow of #{dsn_flow_cfm.round}cfm, and climate zone #{climate_zone}. Exceeds minimum flow requirement of #{erv_cfm}cfm.")
    erv_required = true
  end

  # This code modifies erv_required for NECB 2011
  # Calculation of exhaust heat content and check whether it is > 150 kW

  if template == 'NECB 2011'

    # get all zones in the model
    zones = thermalZones

    # initialize counters
    sum_zone_oa = 0.0
    sum_zone_oa_times_heat_design_t = 0.0

    # zone loop
    zones.each do |zone|
      # get design heat temperature for each zone; this is equivalent to design exhaust temperature
      zone_sizing = zone.sizingZone
      heat_design_t = zone_sizing.zoneHeatingDesignSupplyAirTemperature

      # initialize counter
      zone_oa = 0.0
      # outdoor defined at space level; get OA flow for all spaces within zone
      spaces = zone.spaces

      # space loop
      spaces.each do |space|
        unless space.designSpecificationOutdoorAir.empty? # if empty, don't do anything
          outdoor_air = space.designSpecificationOutdoorAir.get

          # in bTAP, outdoor air specified as outdoor air per person (m3/s/person)
          oa_flow_per_person = outdoor_air.outdoorAirFlowperPerson
          num_people = space.peoplePerFloorArea * space.floorArea
          oa_flow = oa_flow_per_person * num_people # oa flow for the space
          zone_oa += oa_flow # add up oa flow for all spaces to get zone air flow
        end
      end # space loop

      sum_zone_oa += zone_oa # sum of all zone oa flows to get system oa flow
      sum_zone_oa_times_heat_design_t += (zone_oa * heat_design_t) # calculated to get oa flow weighted average of design exhaust temperature
    end # zone loop

    # Calculate average exhaust temperature (oa flow weighted average)
    avg_exhaust_temp = sum_zone_oa_times_heat_design_t / sum_zone_oa

    # for debugging/testing
    #      puts "average exhaust temp = #{avg_exhaust_temp}"
    #      puts "sum_zone_oa = #{sum_zone_oa}"

    # Get January winter design temperature
    # get model weather file name
    weather_file = BTAP::Environment::WeatherFile.new(model.weatherFile.get.path.get)

    # get winter(heating) design temp stored in array
    # Note that the NECB 2011 specifies using the 2.5% january design temperature
    # The outdoor temperature used here is the 0.4% heating design temperature of the coldest month, available in stat file
    outdoor_temp = weather_file.heating_design_info[1]

    #      for debugging/testing
    #      puts "outdoor design temp = #{outdoor_temp}"

    # Calculate exhaust heat content
    exhaust_heat_content = 0.00123 * sum_zone_oa * 1000.0 * (avg_exhaust_temp - outdoor_temp)

    # for debugging/testing
    #      puts "exhaust heat content = #{exhaust_heat_content}"

    # Modify erv_required based on exhaust heat content
    if exhaust_heat_content > 150.0
      erv_required = true
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV required based on exhaust heat content.")
    else
      erv_required = false
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, ERV not required based on exhaust heat content.")
    end

  end # of NECB 2011 condition

  # for debugging/testing
  #    puts "erv_required = #{erv_required}"

  return erv_required
end

#fan_power_limitation_pressure_drop_adjustment_brake_horsepower(template = 'ASHRAE 90.1-2007') ⇒ Double

TODO:

Determine the presence of MERV filters and other stuff in Table 6.5.3.1.1B. May need to extend AirLoopHVAC data model

Determine the fan power limitation pressure drop adjustment Per Table 6.5.3.1.1B

Parameters:

  • template (String) (defaults to: 'ASHRAE 90.1-2007')

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Double)

    fan power limitation pressure drop adjustment units = horsepower



238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 238

def fan_power_limitation_pressure_drop_adjustment_brake_horsepower(template = 'ASHRAE 90.1-2007')
  # Get design supply air flow rate (whether autosized or hard-sized)
  dsn_air_flow_m3_per_s = 0
  dsn_air_flow_cfm = 0
  if autosizedDesignSupplyAirFlowRate.is_initialized
    dsn_air_flow_m3_per_s = autosizedDesignSupplyAirFlowRate.get
    dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = Autosized Design Supply Air Flow Rate.")
  else
    dsn_air_flow_m3_per_s = designSupplyAirFlowRate.get
    dsn_air_flow_cfm = OpenStudio.convert(dsn_air_flow_m3_per_s, 'm^3/s', 'cfm').get
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "* #{dsn_air_flow_cfm.round} cfm = Hard sized Design Supply Air Flow Rate.")
  end

  # TODO: determine the presence of MERV filters and other stuff
  # in Table 6.5.3.1.1B
  # perhaps need to extend AirLoopHVAC data model
  has_fully_ducted_return_and_or_exhaust_air_systems = false

  # Calculate Fan Power Limitation Pressure Drop Adjustment (in wc)
  fan_pwr_adjustment_in_wc = 0

  # Fully ducted return and/or exhaust air systems
  if has_fully_ducted_return_and_or_exhaust_air_systems
    adj_in_wc = 0.5
    fan_pwr_adjustment_in_wc += adj_in_wc
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "--Added #{adj_in_wc} in wc for Fully ducted return and/or exhaust air systems")
  end

  # Convert the pressure drop adjustment to brake horsepower (bhp)
  # assuming that all supply air passes through all devices
  fan_pwr_adjustment_bhp = fan_pwr_adjustment_in_wc * dsn_air_flow_cfm / 4131
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "For #{name}: Fan Power Limitation Pressure Drop Adjustment = #{fan_pwr_adjustment_bhp.round(2)} bhp")

  return fan_pwr_adjustment_bhp
end

#find_design_supply_air_flow_rateDouble

find design_supply_air_flow_rate

Returns:

  • (Double)

    design_supply_air_flow_rate m^3/s



3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3553

def find_design_supply_air_flow_rate
  # Get the design_supply_air_flow_rate
  design_supply_air_flow_rate = nil
  if designSupplyAirFlowRate.is_initialized
    design_supply_air_flow_rate = designSupplyAirFlowRate.get
  elsif autosizedDesignSupplyAirFlowRate.is_initialized
    design_supply_air_flow_rate = autosizedDesignSupplyAirFlowRate.get
  else
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} design sypply air flow rate is not available.")
  end

  return design_supply_air_flow_rate
end

#floor_area_servedObject

Calculate the total floor area of all zones attached to the air loop, in m^2.

return [Double] the total floor area of all zones attached to the air loop, in m^2.



3506
3507
3508
3509
3510
3511
3512
3513
3514
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3506

def floor_area_served
  total_area = 0.0

  thermalZones.each do |zone|
    total_area += zone.floorArea
  end

  return total_area
end

#floor_area_served_exterior_zonesObject

Calculate the total floor area of all zones attached to the air loop that have at least one exterior surface, in m^2.

return [Double] the total floor area of all zones attached to the air loop, in m^2.



3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3538

def floor_area_served_exterior_zones
  total_area = 0.0

  thermalZones.each do |zone|
    # Skip zones that have no exterior surface area
    next if zone.exteriorSurfaceArea.zero?
    total_area += zone.floorArea
  end

  return total_area
end

#floor_area_served_interior_zonesObject

Calculate the total floor area of all zones attached to the air loop that have no exterior surfaces, in m^2.

return [Double] the total floor area of all zones attached to the air loop, in m^2.



3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3521

def floor_area_served_interior_zones
  total_area = 0.0

  thermalZones.each do |zone|
    # Skip zones that have exterior surface area
    next if zone.exteriorSurfaceArea > 0
    total_area += zone.floorArea
  end

  return total_area
end

#get_occupancy_schedule(occupied_percentage_threshold = 0.05) ⇒ ScheduleRuleset

TODO:

Speed up this method. Bottleneck is ScheduleRule.getDaySchedules

This method creates a schedule where the value is zero when the overall occupancy for all zones on the airloop is below the specified threshold, and one when the overall occupancy is greater than or equal to the threshold. This method is designed to use the total number of people on the airloop, so if there is a zone that is continuously occupied by a few people, but other zones that are intermittently occupied by many people, the first zone doesn’t drive the entire system.

Parameters:

  • occupied_percentage_threshold (Double) (defaults to: 0.05)

    the minimum fraction (0 to 1) that counts as occupied

Returns:

  • (ScheduleRuleset)

    a ScheduleRuleset where 0 = unoccupied, 1 = occupied



2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2823

def get_occupancy_schedule(occupied_percentage_threshold = 0.05)
  # Get all the occupancy schedules in every space in every zone
  # served by this airloop.  Include people added via the SpaceType
  # in addition to people hard-assigned to the Space itself.
  occ_schedules_num_occ = {}
  max_occ_on_airloop = 0
  thermalZones.each do |zone|
    # Get the people objects
    zone.spaces.each do |space|
      # From the space type
      if space.spaceType.is_initialized
        space.spaceType.get.people.each do |people|
          num_ppl_sch = people.numberofPeopleSchedule
          if num_ppl_sch.is_initialized
            num_ppl_sch = num_ppl_sch.get
            num_ppl_sch = num_ppl_sch.to_ScheduleRuleset
            next if num_ppl_sch.empty? # Skip non-ruleset schedules
            num_ppl_sch = num_ppl_sch.get
            num_ppl = people.getNumberOfPeople(space.floorArea)
            if occ_schedules_num_occ[num_ppl_sch].nil?
              occ_schedules_num_occ[num_ppl_sch] = num_ppl
            else
              occ_schedules_num_occ[num_ppl_sch] += num_ppl
            end
            max_occ_on_airloop += num_ppl
          end
        end
      end
      # From the space
      space.people.each do |people|
        num_ppl_sch = people.numberofPeopleSchedule
        if num_ppl_sch.is_initialized
          num_ppl_sch = num_ppl_sch.get
          num_ppl_sch = num_ppl_sch.to_ScheduleRuleset
          next if num_ppl_sch.empty? # Skip non-ruleset schedules
          num_ppl_sch = num_ppl_sch.get
          num_ppl = people.getNumberOfPeople(space.floorArea)
          if occ_schedules_num_occ[num_ppl_sch].nil?
            occ_schedules_num_occ[num_ppl_sch] = num_ppl
          else
            occ_schedules_num_occ[num_ppl_sch] += num_ppl
          end
          max_occ_on_airloop += num_ppl
        end
      end
    end
  end

  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "#{name} has #{occ_schedules_num_occ.size} unique occ schedules.")
  occ_schedules_num_occ.each do |occ_sch, num_occ|
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "   #{occ_sch.name} - #{num_occ.round} people")
  end
  OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "   Total #{max_occ_on_airloop.round} people on #{name}")

  # For each day of the year, determine
  # time_value_pairs = []
  year = model.getYearDescription
  yearly_data = []
  yearly_times = OpenStudio::DateTimeVector.new
  yearly_values = []
  (1..365).each do |i|
    times_on_this_day = []
    os_date = year.makeDate(i)
    day_of_week = os_date.dayOfWeek.valueName

    # Get the unique time indices and corresponding day schedules
    occ_schedules_day_schs = {}
    day_sch_num_occ = {}
    occ_schedules_num_occ.each do |occ_sch, num_occ|
      # Get the day schedules for this day
      # (there should only be one)
      day_schs = occ_sch.getDaySchedules(os_date, os_date)
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "Schedule #{occ_sch.name} has #{day_schs.size} day schs") unless day_schs.size == 1
      day_schs[0].times.each do |time|
        times_on_this_day << time.toString
      end
      day_sch_num_occ[day_schs[0]] = num_occ
    end

    # Determine the total fraction for the airloop at each time
    daily_times = []
    daily_os_times = []
    daily_values = []
    daily_occs = []
    times_on_this_day.uniq.sort.each do |time|
      os_time = OpenStudio::Time.new(time)
      os_date_time = OpenStudio::DateTime.new(os_date, os_time)
      # Total number of people at each time
      tot_occ_at_time = 0
      day_sch_num_occ.each do |day_sch, num_occ|
        occ_frac = day_sch.getValue(os_time)
        tot_occ_at_time += occ_frac * num_occ
      end

      # Total fraction for the airloop at each time
      air_loop_occ_frac = tot_occ_at_time / max_occ_on_airloop
      occ_status = 0 # unoccupied
      if air_loop_occ_frac >= occupied_percentage_threshold
        occ_status = 1
      end

      # Add this data to the daily arrays
      daily_times << time
      daily_os_times << os_time
      daily_values << occ_status
      daily_occs << air_loop_occ_frac.round(2)
    end

    # OpenStudio::logFree(OpenStudio::Debug, "openstudio.standards.AirLoopHVAC", "#{daily_times.join(', ')}                  #{daily_values.join(', ')}")

    # Simplify the daily times to eliminate intermediate
    # points with the same value as the following point.
    simple_daily_times = []
    simple_daily_os_times = []
    simple_daily_values = []
    simple_daily_occs = []
    daily_values.each_with_index do |value, j|
      next if value == daily_values[j + 1]
      simple_daily_times << daily_times[j]
      simple_daily_os_times << daily_os_times[j]
      simple_daily_values << daily_values[j]
      simple_daily_occs << daily_occs[j]
    end

    # OpenStudio::logFree(OpenStudio::Debug, "openstudio.standards.AirLoopHVAC", "#{simple_daily_times.join(', ')}                  {simple_daily_values.join(', ')}")

    # Store the daily values
    yearly_data << { 'date' => os_date, 'day_of_week' => day_of_week, 'times' => simple_daily_times, 'values' => simple_daily_values, 'daily_os_times' => simple_daily_os_times, 'daily_occs' => simple_daily_occs }
  end

  # Create a TimeSeries from the data
  # time_series = OpenStudio::TimeSeries.new(times, values, 'unitless')

  # Make a schedule ruleset
  sch_name = "#{name} Occ Sch"
  sch_ruleset = OpenStudio::Model::ScheduleRuleset.new(model)
  sch_ruleset.setName(sch_name.to_s)

  # Default - All Occupied
  day_sch = sch_ruleset.defaultDaySchedule
  day_sch.setName("#{sch_name} Default")
  day_sch.addValue(OpenStudio::Time.new(0, 24, 0, 0), 1)

  # Winter Design Day - All Occupied
  day_sch = OpenStudio::Model::ScheduleDay.new(model)
  sch_ruleset.setWinterDesignDaySchedule(day_sch)
  day_sch = sch_ruleset.winterDesignDaySchedule
  day_sch.setName("#{sch_name} Winter Design Day")
  day_sch.addValue(OpenStudio::Time.new(0, 24, 0, 0), 1)

  # Summer Design Day - All Occupied
  day_sch = OpenStudio::Model::ScheduleDay.new(model)
  sch_ruleset.setSummerDesignDaySchedule(day_sch)
  day_sch = sch_ruleset.summerDesignDaySchedule
  day_sch.setName("#{sch_name} Summer Design Day")
  day_sch.addValue(OpenStudio::Time.new(0, 24, 0, 0), 1)

  # Create ruleset schedules, attempting to create
  # the minimum number of unique rules.
  ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'].each do |weekday|
    OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', weekday.to_s)
    end_of_prev_rule = yearly_data[0]['date']
    yearly_data.each_with_index do |daily_data, k|
      # Skip unless it is the day of week
      # currently under inspection
      day = daily_data['day_of_week']
      next unless day == weekday
      date = daily_data['date']
      times = daily_data['times']
      values = daily_data['values']
      daily_occs = daily_data['daily_occs']

      # If the next (Monday, Tuesday, etc.)
      # is the same as today, keep going.
      # If the next is different, or if
      # we've reached the end of the year,
      # create a new rule
      unless yearly_data[k + 7].nil?
        next_day_times = yearly_data[k + 7]['times']
        next_day_values = yearly_data[k + 7]['values']
        next if times == next_day_times && values == next_day_values
      end

      daily_os_times = daily_data['daily_os_times']
      daily_occs = daily_data['daily_occs']

      # If here, we need to make a rule to cover from the previous
      # rule to today
      OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "Making a new rule for #{weekday} from #{end_of_prev_rule} to #{date}")
      sch_rule = OpenStudio::Model::ScheduleRule.new(sch_ruleset)
      sch_rule.setName("#{sch_name} #{weekday} Rule")
      day_sch = sch_rule.daySchedule
      day_sch.setName("#{sch_name} #{weekday}")
      daily_os_times.each_with_index do |time, t|
        value = values[t]
        next if value == values[t + 1] # Don't add breaks if same value
        day_sch.addValue(time, value)
        OpenStudio.logFree(OpenStudio::Debug, 'openstudio.standards.AirLoopHVAC', "   Adding value #{time}, #{value}")
      end

      # Set the dates when the rule applies
      sch_rule.setStartDate(end_of_prev_rule)
      sch_rule.setEndDate(date)

      # Individual Days
      sch_rule.setApplyMonday(true) if weekday == 'Monday'
      sch_rule.setApplyTuesday(true) if weekday == 'Tuesday'
      sch_rule.setApplyWednesday(true) if weekday == 'Wednesday'
      sch_rule.setApplyThursday(true) if weekday == 'Thursday'
      sch_rule.setApplyFriday(true) if weekday == 'Friday'
      sch_rule.setApplySaturday(true) if weekday == 'Saturday'
      sch_rule.setApplySunday(true) if weekday == 'Sunday'

      # Reset the previous rule end date
      end_of_prev_rule = date + OpenStudio::Time.new(0, 24, 0, 0)
    end
  end

  return sch_ruleset
end

#motorized_oa_damper_required?(template, climate_zone) ⇒ Boolean

Determine if a motorized OA damper is required

Returns:

  • (Boolean)


2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2654

def motorized_oa_damper_required?(template, climate_zone)
  motorized_oa_damper_required = false

  if name.to_s.include? 'Outpatient F1'
    motorized_oa_damper_required = true
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: always has a damper, the minimum OA schedule is the same as airloop availability schedule.")
    return motorized_oa_damper_required
  end

  # If the system has an economizer, it must have
  # a motorized damper.
  if economizer?
    motorized_oa_damper_required = true
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Because the system has an economizer, it requires a motorized OA damper.")
    return motorized_oa_damper_required
  end

  # Determine the exceptions based on
  # number of stories, climate zone, and
  # outdoor air intake rates.
  minimum_oa_flow_cfm = 0
  maximum_stories = 0
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'
    # Assuming that older buildings always
    # used backdraft gravity dampers
    return motorized_oa_damper_required
  when '90.1-2004', '90.1-2007'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
      minimum_oa_flow_cfm = 300
      maximum_stories = 999 # Any number of stories
    else
      minimum_oa_flow_cfm = 300
      maximum_stories = 3
    end
  when '90.1-2010', '90.1-2013'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
      minimum_oa_flow_cfm = 300
      maximum_stories = 999 # Any number of stories
    else
      minimum_oa_flow_cfm = 300
      maximum_stories = 0
    end
  end

  # Get the number of stories
  num_stories = model.getBuildingStorys.size

  # Check the number of stories exception,
  # which is climate-zone dependent.
  if num_stories < maximum_stories
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Motorized OA damper not required because the building has #{num_stories} stories, less than the maximum of #{maximum_stories} stories for climate zone #{climate_zone}.")
    return motorized_oa_damper_required
  end

  # Get the min OA flow rate
  oa_flow_m3_per_s = 0
  if airLoopHVACOutdoorAirSystem.is_initialized
    oa_system = airLoopHVACOutdoorAirSystem.get
    controller_oa = oa_system.getControllerOutdoorAir
    if controller_oa.minimumOutdoorAirFlowRate.is_initialized
      oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
    elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
      oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
    end
  else
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, Motorized OA damper not applicable because it has no OA intake.")
    return motorized_oa_damper_required
  end
  oa_flow_cfm = OpenStudio.convert(oa_flow_m3_per_s, 'm^3/s', 'cfm').get

  # Check the OA flow rate exception
  if oa_flow_cfm < minimum_oa_flow_cfm
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Motorized OA damper not required because the system OA intake of #{oa_flow_cfm.round} cfm is less than the minimum threshold of #{minimum_oa_flow_cfm} cfm.")
    return motorized_oa_damper_required
  end

  # If here, motorized damper is required
  motorized_oa_damper_required = true

  return motorized_oa_damper_required
end

#multizone_vav_optimization_required?(template, climate_zone) ⇒ Bool

TODO:

Add exception logic for systems with AIA healthcare ventilation requirements dual duct systems

Determine if multizone vav optimization is required.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1870

def multizone_vav_optimization_required?(template, climate_zone)
  multizone_opt_required = false

  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'

    # Not required before 90.1-2010
    return multizone_opt_required

  when '90.1-2010', '90.1-2013'

    # Not required for systems with fan-powered terminals
    num_fan_powered_terminals = 0
    demandComponents.each do |comp|
      if comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized || comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized
        num_fan_powered_terminals += 1
      end
    end
    if num_fan_powered_terminals > 0
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, multizone vav optimization is not required because the system has #{num_fan_powered_terminals} fan-powered terminals.")
      return multizone_opt_required
    end

    # Not required for systems that require an ERV
    if energy_recovery?
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: multizone vav optimization is not required because the system has Energy Recovery.")
      return multizone_opt_required
    end

    # Get the OA intake
    controller_oa = nil
    controller_mv = nil
    oa_system = nil
    if airLoopHVACOutdoorAirSystem.is_initialized
      oa_system = airLoopHVACOutdoorAirSystem.get
      controller_oa = oa_system.getControllerOutdoorAir
      controller_mv = controller_oa.controllerMechanicalVentilation
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}, multizone optimization is not applicable because system has no OA intake.")
      return multizone_opt_required
    end

    # Get the AHU design supply air flow rate
    dsn_flow_m3_per_s = nil
    if designSupplyAirFlowRate.is_initialized
      dsn_flow_m3_per_s = designSupplyAirFlowRate.get
    elsif autosizedDesignSupplyAirFlowRate.is_initialized
      dsn_flow_m3_per_s = autosizedDesignSupplyAirFlowRate.get
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} design supply air flow rate is not available, cannot apply efficiency standard.")
      return multizone_opt_required
    end
    dsn_flow_cfm = OpenStudio.convert(dsn_flow_m3_per_s, 'm^3/s', 'cfm').get

    # Get the minimum OA flow rate
    min_oa_flow_m3_per_s = nil
    if controller_oa.minimumOutdoorAirFlowRate.is_initialized
      min_oa_flow_m3_per_s = controller_oa.minimumOutdoorAirFlowRate.get
    elsif controller_oa.autosizedMinimumOutdoorAirFlowRate.is_initialized
      min_oa_flow_m3_per_s = controller_oa.autosizedMinimumOutdoorAirFlowRate.get
    else
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: minimum OA flow rate is not available, cannot apply efficiency standard.")
      return multizone_opt_required
    end
    min_oa_flow_cfm = OpenStudio.convert(min_oa_flow_m3_per_s, 'm^3/s', 'cfm').get

    # Calculate the percent OA at design airflow
    pct_oa = min_oa_flow_m3_per_s / dsn_flow_m3_per_s

    # Not required for systems where
    # exhaust is more than 70% of the total OA intake.
    if pct_oa > 0.7
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{controller_oa.name}: multizone optimization is not applicable because system is more than 70% OA.")
      return multizone_opt_required
    end

    # TODO: Not required for dual-duct systems
    # if self.isDualDuct
    # OpenStudio::logFree(OpenStudio::Info, "openstudio.standards.AirLoopHVAC", "For #{controller_oa.name}: multizone optimization is not applicable because it is a dual duct system")
    # return multizone_opt_required
    # end

    # If here, multizone vav optimization is required
    multizone_opt_required = true

    return multizone_opt_required

  end
end

#multizone_vav_system?Bool

Determine if the system is a multizone VAV system

Returns:

  • (Bool)

    Returns true if required, false if not.



2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2537

def multizone_vav_system?
  multizone_vav_system = false

  # Must serve more than 1 zone
  if thermalZones.size < 2
    return multizone_vav_system
  end

  # Must be a variable volume system
  has_vav_fan = false
  supplyComponents.each do |comp|
    if comp.to_FanVariableVolume.is_initialized
      has_vav_fan = true
    end
  end
  if has_vav_fan == false
    return multizone_vav_system
  end

  # If here, it's a multizone VAV system
  multizone_vav_system = true

  return multizone_vav_system
end

#prm_baseline_economizer_required?(template, climate_zone) ⇒ Bool

Determine if an economizer is required per the PRM.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    returns true if required, false if not



1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 1035

def prm_baseline_economizer_required?(template, climate_zone)
  economizer_required = false

  # A big number of ft2 as the minimum requirement
  infinity_ft2 = 999_999_999_999
  min_int_area_served_ft2 = infinity_ft2
  min_ext_area_served_ft2 = infinity_ft2

  # Determine the minimum capacity that requires an economizer
  case template
  when '90.1-2004'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      min_int_area_served_ft2 = infinity_ft2 # No requirement
      min_ext_area_served_ft2 = infinity_ft2 # No requirement
    when 'ASHRAE 169-2006-2B',
        'ASHRAE 169-2006-5A',
        'ASHRAE 169-2006-6A',
        'ASHRAE 169-2006-7A',
        'ASHRAE 169-2006-7B',
        'ASHRAE 169-2006-8A',
        'ASHRAE 169-2006-8B'
      min_int_area_served_ft2 = 15_000
      min_ext_area_served_ft2 = infinity_ft2 # No requirement
    when 'ASHRAE 169-2006-3B',
        'ASHRAE 169-2006-3C',
        'ASHRAE 169-2006-4B',
        'ASHRAE 169-2006-4C',
        'ASHRAE 169-2006-5B',
        'ASHRAE 169-2006-5C',
        'ASHRAE 169-2006-6B'
      min_int_area_served_ft2 = 10_000
      min_ext_area_served_ft2 = 25_000
    end
  when '90.1-2007', '90.1-2010', '90.1-2013'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
        'ASHRAE 169-2006-1B',
        'ASHRAE 169-2006-2A',
        'ASHRAE 169-2006-3A',
        'ASHRAE 169-2006-4A'
      min_int_area_served_ft2 = infinity_ft2 # No requirement
      min_ext_area_served_ft2 = infinity_ft2 # No requirement
    else
      min_int_area_served_ft2 = 0 # Always required
      min_ext_area_served_ft2 = 0 # Always required
    end
  end

  # Check whether the system requires an economizer by comparing
  # the system capacity to the minimum capacity.
  min_int_area_served_m2 = OpenStudio.convert(min_int_area_served_ft2, 'ft^2', 'm^2').get
  min_ext_area_served_m2 = OpenStudio.convert(min_ext_area_served_ft2, 'ft^2', 'm^2').get

  # Get the interior and exterior area served
  int_area_served_m2 = floor_area_served_interior_zones
  ext_area_served_m2 = floor_area_served_exterior_zones

  # Check the floor area exception
  if int_area_served_m2 < min_int_area_served_m2 && ext_area_served_m2 < min_ext_area_served_m2
    if min_int_area_served_ft2 == infinity_ft2 && min_ext_area_served_ft2 == infinity_ft2
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer not required for climate zone #{climate_zone}.")
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer not required for because the interior area served of #{int_area_served_m2} ft2 < minimum of #{min_int_area_served_m2} and the perimeter area served of #{ext_area_served_m2} ft2 < minimum of #{min_ext_area_served_m2} for climate zone #{climate_zone}.")
    end
    return economizer_required
  end

  # If here, economizer required
  economizer_required = true
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Economizer required for the performance rating method baseline.")

  return economizer_required
end

#remove_motorized_oa_damperObject

Remove a motorized OA damper by modifying the OA schedule to require full OA at all times. Whenever the fan operates, the damper will be open and OA will be brought into the building. This reflects the use of a backdraft gravity damper, and increases building loads unnecessarily during unoccupied hours.



2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2795

def remove_motorized_oa_damper
  # Get the OA system and OA controller
  oa_sys = airLoopHVACOutdoorAirSystem
  if oa_sys.is_initialized
    oa_sys = oa_sys.get
  else
    return false # No OA system
  end
  oa_control = oa_sys.getControllerOutdoorAir

  # Set the minimum OA schedule to always 1 (100%)
  oa_control.setMinimumOutdoorAirSchedule(model.alwaysOnDiscreteSchedule)

  return true
end

#static_pressure_reset_required?(template, has_ddc) ⇒ Boolean

TODO:

Instead of requiring the input of whether a system has DDC control of VAV terminals or not, determine this from the system itself. This may require additional information be added to the OpenStudio data model.

Determine if static pressure reset is required for this system. For 90.1, this determination needs information about whether or not the system has DDC control over the VAV terminals.

over VAV terminals. return [Bool] returns true if static pressure reset is required, false if not

Parameters:

  • template (String)

    the template base requirements on

  • has_ddc (Bool)

    whether or not the system has DDC control

Returns:

  • (Boolean)


3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3405

def static_pressure_reset_required?(template, has_ddc)
  sp_reset_required = false

  # A big number of btu per hr as the minimum requirement
  infinity_btu_per_hr = 999_999_999_999
  minimum_capacity_btu_per_hr = infinity_btu_per_hr

  # Determine the minimum capacity that requires an economizer
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004'
    # static pressure reset not required
  when '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013'
    if has_ddc
      sp_reset_required = true
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Static pressure reset is required because the system has DDC control of VAV terminals.")
    else
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Static pressure reset not required because the system does not have DDC control of VAV terminals.")
    end
  when 'NECB 2011'
    # static pressure reset not required
  end

  return sp_reset_required
end

#supply_air_temperature_reset_required?(template, climate_zone) ⇒ Bool

Determine if the system required supply air temperature (SAT) reset.

Parameters:

  • template (String)

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

  • climate_zone (String)

    valid choices: ‘ASHRAE 169-2006-1A’, ‘ASHRAE 169-2006-1B’, ‘ASHRAE 169-2006-2A’, ‘ASHRAE 169-2006-2B’,

Returns:

  • (Bool)

    Returns true if required, false if not.



2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2385

def supply_air_temperature_reset_required?(template, climate_zone)
  is_sat_reset_required = false

  # Only required for multizone VAV systems
  return is_sat_reset_required unless multizone_vav_system?

  # Not required until 90.1-2010
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007'
    return is_sat_reset_required
  when '90.1-2010', '90.1-2013'
    case climate_zone
    when 'ASHRAE 169-2006-1A',
      'ASHRAE 169-2006-2A',
      'ASHRAE 169-2006-3A'
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Supply air temperature reset is not required per 6.5.3.4 Exception 1, the system is located in climate zone #{climate_zone}.")
    when 'ASHRAE 169-2006-1B',
      'ASHRAE 169-2006-2B',
      'ASHRAE 169-2006-3B',
      'ASHRAE 169-2006-3C',
      'ASHRAE 169-2006-4A',
      'ASHRAE 169-2006-4B',
      'ASHRAE 169-2006-4C',
      'ASHRAE 169-2006-5A',
      'ASHRAE 169-2006-5B',
      'ASHRAE 169-2006-5C',
      'ASHRAE 169-2006-6A',
      'ASHRAE 169-2006-6B',
      'ASHRAE 169-2006-7A',
      'ASHRAE 169-2006-7B',
      'ASHRAE 169-2006-8A',
      'ASHRAE 169-2006-8B'
      is_sat_reset_required = true
      OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Supply air temperature reset is required.")
      return is_sat_reset_required
    end
  end
end

#supply_return_exhaust_relief_fansArray

Get all of the supply, return, exhaust, and relief fans on this system

Returns:

  • (Array)

    an array of FanConstantVolume, FanVariableVolume, and FanOnOff objects



358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 358

def supply_return_exhaust_relief_fans
  # Fans on the supply side of the airloop directly, or inside of unitary equipment.
  fans = []
  sup_and_oa_comps = supplyComponents
  sup_and_oa_comps += oaComponents
  sup_and_oa_comps.each do |comp|
    if comp.to_FanConstantVolume.is_initialized
      fans << comp.to_FanConstantVolume.get
    elsif comp.to_FanVariableVolume.is_initialized
      fans << comp.to_FanVariableVolume.get
    elsif comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.is_initialized
      sup_fan = comp.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.get.supplyAirFan
      if sup_fan.to_FanConstantVolume.is_initialized
        fans << sup_fan.to_FanConstantVolume.get
      elsif sup_fan.to_FanOnOff.is_initialized
        fans << sup_fan.to_FanOnOff.get
      end
    elsif comp.to_AirLoopHVACUnitarySystem.is_initialized
      sup_fan = comp.to_AirLoopHVACUnitarySystem.get.supplyFan
      next if sup_fan.empty?
      sup_fan = sup_fan.get
      if sup_fan.to_FanConstantVolume.is_initialized
        fans << sup_fan.to_FanConstantVolume.get
      elsif sup_fan.to_FanOnOff.is_initialized
        fans << sup_fan.to_FanOnOff.get
      elsif sup_fan.to_FanVariableVolume.is_initialized
        fans << sup_fan.to_FanVariableVolume.get
      end
    end
  end

  return fans
end

#system_fan_brake_horsepower(include_terminal_fans = true, template = 'ASHRAE 90.1-2007') ⇒ Double

Determine the total brake horsepower of the fans on the system with or without the fans inside of fan powered terminals.

Parameters:

  • include_terminal_fans (Bool) (defaults to: true)

    if true, power from fan powered terminals will be included

  • template (String) (defaults to: 'ASHRAE 90.1-2007')

    valid choices: ‘DOE Ref Pre-1980’, ‘DOE Ref 1980-2004’, ‘90.1-2004’, ‘90.1-2007’, ‘90.1-2010’, ‘90.1-2013’

Returns:

  • (Double)

    total brake horsepower of the fans on the system units = horsepower



399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 399

def system_fan_brake_horsepower(include_terminal_fans = true, template = 'ASHRAE 90.1-2007')
  # TODO: get the template from the parent model itself?
  # Or not because maybe you want to see the difference between two standards?
  OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "#{name}-Determining #{template} allowable system fan power.")

  # Get all fans
  fans = []
  # Supply, exhaust, relief, and return fans
  fans += supply_return_exhaust_relief_fans

  # Fans inside of fan-powered terminals
  if include_terminal_fans
    demandComponents.each do |comp|
      if comp.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized
        term_fan = comp.to_AirTerminalSingleDuctSeriesPIUReheat.get.supplyAirFan
        if term_fan.to_FanConstantVolume.is_initialized
          fans << term_fan.to_FanConstantVolume.get
        end
      elsif comp.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized
        term_fan = comp.to_AirTerminalSingleDuctParallelPIUReheat.get.fan
        if term_fan.to_FanConstantVolume.is_initialized
          fans << term_fan.to_FanConstantVolume.get
        end
      end
    end
  end

  # Loop through all fans on the system and
  # sum up their brake horsepower values.
  sys_fan_bhp = 0
  fans.sort.each do |fan|
    sys_fan_bhp += fan.brake_horsepower
  end

  return sys_fan_bhp
end

#system_multiplierInteger

Determine if every zone on the system has an identical multiplier. If so, return this number. If not, return 1.

Returns:

  • (Integer)

    an integer representing the system multiplier.



3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3673

def system_multiplier
  mult = 1

  # Get all the zone multipliers
  zn_mults = []
  thermalZones.each do |zone|
    zn_mults << zone.multiplier
  end
 
  # Warn if there are different multipliers
  uniq_mults = zn_mults.uniq
  if uniq_mults.size > 1
    OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name}: not all zones on the system have an identical zone multiplier.  Multipliers are: #{uniq_mults.join(', ')}.")
  else
    mult = uniq_mults[0]
  end

  return mult
end

#terminal_reheat?Bool

Determine if the system has terminal reheat

Returns:

  • (Bool)

    returns true if has one or more reheat terminals, false if it doesn’t.



2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 2565

def terminal_reheat?
  has_term_rht = false
  demandComponents.each do |sc|
    if sc.to_AirTerminalSingleDuctConstantVolumeReheat.is_initialized ||
       sc.to_AirTerminalSingleDuctParallelPIUReheat.is_initialized ||
       sc.to_AirTerminalSingleDuctSeriesPIUReheat.is_initialized ||
       sc.to_AirTerminalSingleDuctVAVHeatAndCoolReheat.is_initialized ||
       sc.to_AirTerminalSingleDuctVAVReheat.is_initialized
       has_term_rht = true
       break
    end
  end

  return has_term_rht  
end

#total_cooling_capacityDouble

TODO:

Change to pull water coil nominal capacity instead of design load; not a huge difference, but water coil nominal capacity not available in sizing table.

TODO:

Handle all additional cooling coil types. Currently only handles CoilCoolingDXSingleSpeed, CoilCoolingDXTwoSpeed, and CoilCoolingWater

Get the total cooling capacity for the air loop

Returns:

  • (Double)

    total cooling capacity units = Watts (W)



527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 527

def total_cooling_capacity
  # Sum the cooling capacity for all cooling components
  # on the airloop, which may be inside of unitary systems.
  total_cooling_capacity_w = 0
  supplyComponents.each do |sc|
    # CoilCoolingDXSingleSpeed
    if sc.to_CoilCoolingDXSingleSpeed.is_initialized
      coil = sc.to_CoilCoolingDXSingleSpeed.get
      if coil.ratedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.ratedTotalCoolingCapacity.get
      elsif coil.autosizedRatedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.autosizedRatedTotalCoolingCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
      end
      # CoilCoolingDXTwoSpeed
    elsif sc.to_CoilCoolingDXTwoSpeed.is_initialized
      coil = sc.to_CoilCoolingDXTwoSpeed.get
      if coil.ratedHighSpeedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.ratedHighSpeedTotalCoolingCapacity.get
      elsif coil.autosizedRatedHighSpeedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.autosizedRatedHighSpeedTotalCoolingCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
      end
      # CoilCoolingWater
    elsif sc.to_CoilCoolingWater.is_initialized
      coil = sc.to_CoilCoolingWater.get
      if coil.autosizedDesignCoilLoad.is_initialized # TODO: Change to pull water coil nominal capacity instead of design load
        total_cooling_capacity_w += coil.autosizedDesignCoilLoad.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
      end
      # CoilCoolingWaterToAirHeatPumpEquationFit
    elsif sc.to_CoilCoolingWaterToAirHeatPumpEquationFit.is_initialized
      coil = sc.to_CoilCoolingWaterToAirHeatPumpEquationFit.get
      if coil.ratedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.ratedTotalCoolingCapacity.get
      elsif coil.autosizedRatedTotalCoolingCapacity.is_initialized
        total_cooling_capacity_w += coil.autosizedRatedTotalCoolingCapacity.get
      else
        OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
      end
    elsif sc.to_AirLoopHVACUnitarySystem.is_initialized
      unitary = sc.to_AirLoopHVACUnitarySystem.get
      if unitary.coolingCoil.is_initialized
        clg_coil = unitary.coolingCoil.get
        # CoilCoolingDXSingleSpeed
        if clg_coil.to_CoilCoolingDXSingleSpeed.is_initialized
          coil = clg_coil.to_CoilCoolingDXSingleSpeed.get
          if coil.ratedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.ratedTotalCoolingCapacity.get
          elsif coil.autosizedRatedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.autosizedRatedTotalCoolingCapacity.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
          end
        # CoilCoolingDXTwoSpeed
        elsif clg_coil.to_CoilCoolingDXTwoSpeed.is_initialized
          coil = clg_coil.to_CoilCoolingDXTwoSpeed.get
          if coil.ratedHighSpeedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.ratedHighSpeedTotalCoolingCapacity.get
          elsif coil.autosizedRatedHighSpeedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.autosizedRatedHighSpeedTotalCoolingCapacity.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
          end
        # CoilCoolingWater
        elsif clg_coil.to_CoilCoolingWater.is_initialized
          coil = clg_coil.to_CoilCoolingWater.get
          if coil.autosizedDesignCoilLoad.is_initialized # TODO: Change to pull water coil nominal capacity instead of design load
            total_cooling_capacity_w += coil.autosizedDesignCoilLoad.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
          end
        # CoilCoolingWaterToAirHeatPumpEquationFit
        elsif clg_coil.to_CoilCoolingWaterToAirHeatPumpEquationFit.is_initialized
          coil = clg_coil.to_CoilCoolingWaterToAirHeatPumpEquationFit.get
          if coil.ratedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.ratedTotalCoolingCapacity.get
          elsif coil.autosizedRatedTotalCoolingCapacity.is_initialized
            total_cooling_capacity_w += coil.autosizedRatedTotalCoolingCapacity.get
          else
            OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
          end
        end
      end
    elsif sc.to_AirLoopHVACUnitaryHeatPumpAirToAir.is_initialized
      unitary = sc.to_AirLoopHVACUnitaryHeatPumpAirToAir.get
      clg_coil = unitary.coolingCoil
      # CoilCoolingDXSingleSpeed
      if clg_coil.to_CoilCoolingDXSingleSpeed.is_initialized
        coil = clg_coil.to_CoilCoolingDXSingleSpeed.get
        if coil.ratedTotalCoolingCapacity.is_initialized
          total_cooling_capacity_w += coil.ratedTotalCoolingCapacity.get
        elsif coil.autosizedRatedTotalCoolingCapacity.is_initialized
          total_cooling_capacity_w += coil.autosizedRatedTotalCoolingCapacity.get
        else
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
        end
      # CoilCoolingDXTwoSpeed
      elsif clg_coil.to_CoilCoolingDXTwoSpeed.is_initialized
        coil = clg_coil.to_CoilCoolingDXTwoSpeed.get
        if coil.ratedHighSpeedTotalCoolingCapacity.is_initialized
          total_cooling_capacity_w += coil.ratedHighSpeedTotalCoolingCapacity.get
        elsif coil.autosizedRatedHighSpeedTotalCoolingCapacity.is_initialized
          total_cooling_capacity_w += coil.autosizedRatedHighSpeedTotalCoolingCapacity.get
        else
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
        end
      # CoilCoolingWater
      elsif clg_coil.to_CoilCoolingWater.is_initialized
        coil = clg_coil.to_CoilCoolingWater.get
        if coil.autosizedDesignCoilLoad.is_initialized # TODO: Change to pull water coil nominal capacity instead of design load
          total_cooling_capacity_w += coil.autosizedDesignCoilLoad.get
        else
          OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "For #{name} capacity of #{coil.name} is not available, total cooling capacity of air loop will be incorrect when applying standard.")
        end
      end
    elsif sc.to_CoilCoolingDXMultiSpeed.is_initialized ||
          sc.to_CoilCoolingCooledBeam.is_initialized ||
          sc.to_AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass.is_initialized ||
          sc.to_AirLoopHVACUnitaryHeatPumpAirToAirMultiSpeed.is_initialized ||
          sc.to_AirLoopHVACUnitarySystem.is_initialized
      OpenStudio.logFree(OpenStudio::Warn, 'openstudio.standards.AirLoopHVAC', "#{name} has a cooling coil named #{sc.name}, whose type is not yet covered by economizer checks.")
      # CoilCoolingDXMultiSpeed
      # CoilCoolingCooledBeam
      # CoilCoolingWaterToAirHeatPumpEquationFit
      # AirLoopHVACUnitaryHeatCoolVAVChangeoverBypass
      # AirLoopHVACUnitaryHeatPumpAirToAir
      # AirLoopHVACUnitaryHeatPumpAirToAirMultiSpeed
      # AirLoopHVACUnitarySystem
    end
  end

  return total_cooling_capacity_w
end

#unoccupied_fan_shutoff_required?(template) ⇒ Bool

Determine if a system’s fans must shut off when not required.

Parameters:

Returns:

  • (Bool)

    true if required, false if not



3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
# File 'lib/openstudio-standards/standards/Standards.AirLoopHVAC.rb', line 3435

def unoccupied_fan_shutoff_required?(template)
  shutoff_required = true

  # Per 90.1 6.4.3.4.5, systems less than 0.75 HP
  # must turn off when unoccupied.
  minimum_fan_hp = nil
  case template
  when 'DOE Ref Pre-1980', 'DOE Ref 1980-2004', '90.1-2004', '90.1-2007', '90.1-2010', '90.1-2013', 'NECB 2011'
    minimum_fan_hp = 0.75
  end

  # Determine the system fan horsepower
  total_hp = 0.0
  supply_return_exhaust_relief_fans.each do |fan|
    total_hp += fan.motor_horsepower
  end

  # Check the HP exception
  if total_hp < minimum_fan_hp
    shutoff_required = false
    OpenStudio.logFree(OpenStudio::Info, 'openstudio.standards.AirLoopHVAC', "For #{name}: Unoccupied fan shutoff not required because system fan HP of #{total_hp.round(2)} HP is less than the minimum threshold of #{minimum_fan_hp} HP.")
  end

  return shutoff_required
end