Method: OpenC3::BinaryAccessor.write_array

Defined in:
lib/openc3/accessors/binary_accessor.rb

.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow) ⇒ Array

Writes an array of binary data of any data type to a buffer

Parameters:

  • values (Array)

    Values to write into the buffer

  • bit_offset (Integer)

    Bit offset to the start of the array. A negative number means to offset from the end of the buffer.

  • bit_size (Integer)

    Size of each item in the array in bits

  • data_type (Symbol)
  • array_size (Integer)

    Size in bits of the array as represented in the buffer. Size 0 means to fill the buffer with as many bit_size number of items that exist (negative means excluding the final X number of bits).

  • buffer (String)

    Binary string buffer to write to

  • endianness (Symbol)

Returns:

  • (Array)

    values passed in as a parameter

Raises:

  • (ArgumentError)


913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
# File 'lib/openc3/accessors/binary_accessor.rb', line 913

def self.write_array(values, bit_offset, bit_size, data_type, array_size, buffer, endianness, overflow)
  # Save given values of bit offset, bit size, and array_size
  given_bit_offset = bit_offset
  given_bit_size = bit_size
  given_array_size = array_size

  # Verify an array was given
  raise ArgumentError, "values must be an Array type class is #{values.class}" unless values.kind_of? Array

  # Handle negative and zero bit sizes
  raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0

  # Handle negative bit offsets
  if bit_offset < 0
    bit_offset = ((buffer.length * 8) + bit_offset)
    raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0
  end

  # Handle negative and zero array sizes
  if array_size <= 0
    if given_bit_offset < 0
      raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})"
    else
      end_bytes = -(given_array_size / 8)
      lower_bound = bit_offset / 8
      upper_bound = (bit_offset + (bit_size * values.length) - 1) / 8
      old_upper_bound = buffer.length - 1 - end_bytes

      if upper_bound < old_upper_bound
        # Remove extra bytes from old buffer
        buffer[(upper_bound + 1)..old_upper_bound] = ''
      elsif upper_bound > old_upper_bound
        # Grow buffer and preserve bytes at end of buffer if necesssary
        buffer_length = buffer.length
        diff = upper_bound - old_upper_bound
        buffer << ZERO_STRING * diff
        if end_bytes > 0
          buffer[(upper_bound + 1)..(buffer.length - 1)] = buffer[(old_upper_bound + 1)..(buffer_length - 1)]
        end
      end

      array_size = ((buffer.length * 8) - bit_offset + array_size)
    end
  end

  # Get data bounds for this array
  lower_bound = bit_offset / 8
  upper_bound = (bit_offset + array_size - 1) / 8
  num_bytes   = upper_bound - lower_bound + 1

  # Check for byte alignment
  byte_aligned = ((bit_offset % 8) == 0)

  # Calculate the number of writes
  num_writes = array_size / bit_size
  # Check for a negative array_size and adjust the number of writes
  # to simply be the number of values in the passed in array
  if given_array_size <= 0
    num_writes = values.length
  end

  # Ensure the buffer has enough room
  if bit_offset + num_writes * bit_size > buffer.length * 8
    raise_buffer_error(:write, buffer, data_type, given_bit_offset, given_bit_size)
  end

  # Ensure the given_array_size is an even multiple of bit_size
  raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0

  raise ArgumentError, "too many values #{values.length} for given array_size #{given_array_size} and bit_size #{given_bit_size}" if num_writes < values.length

  # Check overflow type
  raise "unknown overflow type #{overflow}" unless OVERFLOW_TYPES.include?(overflow)

  case data_type
  when :STRING, :BLOCK
    #######################################
    # Handle :STRING and :BLOCK data types
    #######################################

    if byte_aligned
      num_writes.times do |index|
        self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow)
        bit_offset += bit_size
      end
    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  when :INT, :UINT
    ###################################
    # Handle :INT and :UINT data types
    ###################################

    if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64)
      ###########################################################
      # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT
      ###########################################################

      case bit_size
      when 8
        if data_type == :INT
          values = self.check_overflow_array(values, MIN_INT8, MAX_INT8, MAX_UINT8, bit_size, data_type, overflow)
          packed = values.pack(PACK_8_BIT_INT_ARRAY)
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, MAX_UINT8, MAX_UINT8, bit_size, data_type, overflow)
          packed = values.pack(PACK_8_BIT_UINT_ARRAY)
        end

      when 16
        if data_type == :INT
          values = self.check_overflow_array(values, MIN_INT16, MAX_INT16, MAX_UINT16, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_16_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 2)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, MAX_UINT16, MAX_UINT16, bit_size, data_type, overflow)
          if endianness == :BIG_ENDIAN
            packed = values.pack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            packed = values.pack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY)
          end
        end

      when 32
        if data_type == :INT
          values = self.check_overflow_array(values, MIN_INT32, MAX_INT32, MAX_UINT32, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_32_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 4)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, MAX_UINT32, MAX_UINT32, bit_size, data_type, overflow)
          if endianness == :BIG_ENDIAN
            packed = values.pack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY)
          end
        end

      when 64
        if data_type == :INT
          values = self.check_overflow_array(values, MIN_INT64, MAX_INT64, MAX_UINT64, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_INT_ARRAY)
            self.byte_swap_buffer!(packed, 8)
          end
        else # data_type == :UINT
          values = self.check_overflow_array(values, 0, MAX_UINT64, MAX_UINT64, bit_size, data_type, overflow)
          if endianness == HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            packed = values.pack(PACK_NATIVE_64_BIT_UINT_ARRAY)
            self.byte_swap_buffer!(packed, 8)
          end
        end
      end

      # Adjust packed size to hold number of items written
      buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0

    else
      ##################################
      # Handle :INT and :UINT Bitfields
      ##################################

      raise ArgumentError, "write_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1

      num_writes.times do |index|
        self.write(values[index], bit_offset, bit_size, data_type, buffer, endianness, overflow)
        bit_offset += bit_size
      end
    end

  when :FLOAT
    ##########################
    # Handle :FLOAT data type
    ##########################

    if byte_aligned
      case bit_size
      when 32
        if endianness == :BIG_ENDIAN
          packed = values.pack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          packed = values.pack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY)
        end

      when 64
        if endianness == :BIG_ENDIAN
          packed = values.pack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          packed = values.pack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY)
        end

      else
        raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}"
      end

      # Adjust packed size to hold number of items written
      buffer[lower_bound..upper_bound] = adjust_packed_size(num_bytes, packed) if num_bytes > 0

    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  else
    ############################
    # Handle Unknown data types
    ############################
    raise ArgumentError, "data_type #{data_type} is not recognized"
  end # case data_type

  values
end