Method: OpenC3::BinaryAccessor.read_array

Defined in:
lib/openc3/accessors/binary_accessor.rb

.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness) ⇒ Array

Reads an array of binary data of any data type from a buffer

Parameters:

  • Bit offset to the start of the array. A negative number means to offset from the end of the buffer.

  • Size of each item in the array in bits

  • Size in bits of the array. 0 or negative means fill the array with as many bit_size number of items that exist (negative means excluding the final X number of bits).

  • Binary string buffer to read from

Returns:

  • Array created from reading the buffer

Raises:



721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
# File 'lib/openc3/accessors/binary_accessor.rb', line 721

def self.read_array(bit_offset, bit_size, data_type, array_size, buffer, endianness)
  # Save given values of bit offset, bit size, and array_size
  given_bit_offset = bit_offset
  given_bit_size = bit_size
  given_array_size = array_size

  # Handle negative and zero bit sizes
  raise ArgumentError, "bit_size #{given_bit_size} must be positive for arrays" if bit_size <= 0

  # Handle negative bit offsets
  if bit_offset < 0
    bit_offset = ((buffer.length * 8) + bit_offset)
    raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) if bit_offset < 0
  end

  # Handle negative and zero array sizes
  if array_size <= 0
    if given_bit_offset < 0
      raise ArgumentError, "negative or zero array_size (#{given_array_size}) cannot be given with negative bit_offset (#{given_bit_offset})"
    else
      array_size = ((buffer.length * 8) - bit_offset + array_size)
      if array_size == 0
        return []
      elsif array_size < 0
        raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size)
      end
    end
  end

  # Calculate number of items in the array
  # If there is a remainder then we have a problem
  raise ArgumentError, "array_size #{given_array_size} not a multiple of bit_size #{given_bit_size}" if array_size % bit_size != 0

  num_items = array_size / bit_size

  # Define bounds of string to access this item
  lower_bound = bit_offset / 8
  upper_bound = (bit_offset + array_size - 1) / 8

  # Check for byte alignment
  byte_aligned = ((bit_offset % 8) == 0)

  case data_type
  when :STRING, :BLOCK
    #######################################
    # Handle :STRING and :BLOCK data types
    #######################################

    if byte_aligned
      value = []
      num_items.times do
        value << self.read(bit_offset, bit_size, data_type, buffer, endianness)
        bit_offset += bit_size
      end
    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  when :INT, :UINT
    ###################################
    # Handle :INT and :UINT data types
    ###################################

    if byte_aligned and (bit_size == 8 or bit_size == 16 or bit_size == 32 or bit_size == 64)
      ###########################################################
      # Handle byte-aligned 8, 16, 32, and 64 bit :INT and :UINT
      ###########################################################

      case bit_size
      when 8
        if data_type == :INT
          value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_INT_ARRAY)
        else # data_type == :UINT
          value = buffer[lower_bound..upper_bound].unpack(PACK_8_BIT_UINT_ARRAY)
        end

      when 16
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_16_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 2)
            value = temp.to_s.unpack(PACK_NATIVE_16_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == :BIG_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_16_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_16_BIT_UINT_ARRAY)
          end
        end

      when 32
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_32_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 4)
            value = temp.to_s.unpack(PACK_NATIVE_32_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == :BIG_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_UINT_ARRAY)
          else # endianness == :LITTLE_ENDIAN
            value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_UINT_ARRAY)
          end
        end

      when 64
        if data_type == :INT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_INT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8)
            value = temp.to_s.unpack(PACK_NATIVE_64_BIT_INT_ARRAY)
          end
        else # data_type == :UINT
          if endianness == HOST_ENDIANNESS
            value = buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          else # endianness != HOST_ENDIANNESS
            temp = self.byte_swap_buffer(buffer[lower_bound..upper_bound], 8)
            value = temp.to_s.unpack(PACK_NATIVE_64_BIT_UINT_ARRAY)
          end
        end
      end

    else
      ##################################
      # Handle :INT and :UINT Bitfields
      ##################################
      raise ArgumentError, "read_array does not support little endian bit fields with bit_size greater than 1-bit" if endianness == :LITTLE_ENDIAN and bit_size > 1

      value = []
      num_items.times do
        value << self.read(bit_offset, bit_size, data_type, buffer, endianness)
        bit_offset += bit_size
      end
    end

  when :FLOAT
    ##########################
    # Handle :FLOAT data type
    ##########################

    if byte_aligned
      case bit_size
      when 32
        if endianness == :BIG_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT_ARRAY)
        end

      when 64
        if endianness == :BIG_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_64_BIT_FLOAT_ARRAY)
        else # endianness == :LITTLE_ENDIAN
          value = buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT_ARRAY)
        end

      else
        raise ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}"
      end

    else
      raise ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}"
    end

  else
    ############################
    # Handle Unknown data types
    ############################

    raise ArgumentError, "data_type #{data_type} is not recognized"
  end

  value
end