Module: Numo::Libsvm
- Defined in:
- ext/numo/libsvm/libsvmext.c,
lib/numo/libsvm/version.rb,
ext/numo/libsvm/libsvmext.c
Overview
Numo::Libsvm is a binding library for LIBSVM that handles dataset with Numo::NArray.
Defined Under Namespace
Modules: KernelType, SvmType
Constant Summary collapse
- VERSION =
The version of Numo::Libsvm you are using.
'0.1.0'- LIBSVM_VERSION =
The version of LIBSVM used in backgroud library.
INT2NUM(LIBSVM_VERSION)
Class Method Summary collapse
-
.cv(x, y, param, n_folds) ⇒ Numo::DFloat
Perform cross validation under given parameters.
-
.decision_function(x, param, model) ⇒ Numo::DFloat
Calculate decision values for given samples.
-
.load_svm_model(filename) ⇒ Array
Load the SVM parameters and model from a text file with LIBSVM format.
-
.predict(x, param, model) ⇒ Numo::DFloat
Predict class labels or values for given samples.
-
.predict_proba(x, param, model) ⇒ Numo::DFloat
Predict class probability for given samples.
-
.save_svm_model(filename, param, model) ⇒ Boolean
Save the SVM parameters and model as a text file with LIBSVM format.
-
.train(x, y, param) ⇒ Hash
Train the SVM model according to the given training data.
Class Method Details
.cv(x, y, param, n_folds) ⇒ Numo::DFloat
Perform cross validation under given parameters. The given samples are separated to n_fols folds. The predicted labels or values in the validation process are returned.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# File 'ext/numo/libsvm/libsvmext.c', line 100 static VALUE cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, VALUE nr_folds) { const int n_folds = NUM2INT(nr_folds); struct svm_problem* problem; struct svm_parameter* param; narray_t* x_nary; double* x_pt; double* y_pt; int i, j; int n_samples; int n_features; size_t t_shape[1]; VALUE t_val; double* t_pt; /* Obtain C data structures. */ if (CLASS_OF(x_val) != numo_cDFloat) { x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val); } if (CLASS_OF(y_val) != numo_cDFloat) { y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val); } if (!RTEST(nary_check_contiguous(x_val))) { x_val = nary_dup(x_val); } if (!RTEST(nary_check_contiguous(y_val))) { y_val = nary_dup(y_val); } GetNArray(x_val, x_nary); param = rb_hash_to_svm_parameter(param_hash); /* Initialize some variables. */ n_samples = (int)NA_SHAPE(x_nary)[0]; n_features = (int)NA_SHAPE(x_nary)[1]; x_pt = (double*)na_get_pointer_for_read(x_val); y_pt = (double*)na_get_pointer_for_read(y_val); /* Prepare LIBSVM problem. */ problem = ALLOC(struct svm_problem); problem->l = n_samples; problem->x = ALLOC_N(struct svm_node*, n_samples); problem->y = ALLOC_N(double, n_samples); for (i = 0; i < n_samples; i++) { problem->x[i] = ALLOC_N(struct svm_node, n_features + 1); for (j = 0; j < n_features; j++) { problem->x[i][j].index = j + 1; problem->x[i][j].value = x_pt[i * n_features + j]; } problem->x[i][n_features].index = -1; problem->x[i][n_features].value = 0.0; problem->y[i] = y_pt[i]; } /* Perform cross validation. */ t_shape[0] = n_samples; t_val = rb_narray_new(numo_cDFloat, 1, t_shape); t_pt = (double*)na_get_pointer_for_write(t_val); svm_set_print_string_function(print_null); svm_cross_validation(problem, param, n_folds, t_pt); for (i = 0; i < n_samples; xfree(problem->x[i++])); xfree(problem->x); xfree(problem->y); xfree(problem); xfree_svm_parameter(param); return t_val; } |
.decision_function(x, param, model) ⇒ Numo::DFloat
Calculate decision values for given samples.
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# File 'ext/numo/libsvm/libsvmext.c', line 244 static VALUE decision_function(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) { struct svm_parameter* param; struct svm_model* model; struct svm_node* x_nodes; narray_t* x_nary; double* x_pt; size_t y_shape[2]; VALUE y_val; double* y_pt; double* dec_values; int y_cols; int i, j; int n_samples; int n_features; /* Obtain C data structures. */ if (CLASS_OF(x_val) != numo_cDFloat) { x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val); } if (!RTEST(nary_check_contiguous(x_val))) { x_val = nary_dup(x_val); } GetNArray(x_val, x_nary); param = rb_hash_to_svm_parameter(param_hash); model = rb_hash_to_svm_model(model_hash); model->param = *param; /* Initialize some variables. */ n_samples = (int)NA_SHAPE(x_nary)[0]; n_features = (int)NA_SHAPE(x_nary)[1]; if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { y_shape[0] = n_samples; y_shape[1] = 1; y_val = rb_narray_new(numo_cDFloat, 1, y_shape); } else { y_shape[0] = n_samples; y_shape[1] = model->nr_class * (model->nr_class - 1) / 2; y_val = rb_narray_new(numo_cDFloat, 2, y_shape); } x_pt = (double*)na_get_pointer_for_read(x_val); y_pt = (double*)na_get_pointer_for_write(y_val); /* Predict values. */ if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { x_nodes = ALLOC_N(struct svm_node, n_features + 1); x_nodes[n_features].index = -1; x_nodes[n_features].value = 0.0; for (i = 0; i < n_samples; i++) { for (j = 0; j < n_features; j++) { x_nodes[j].index = j + 1; x_nodes[j].value = (double)x_pt[i * n_features + j]; } svm_predict_values(model, x_nodes, &y_pt[i]); } xfree(x_nodes); } else { y_cols = (int)y_shape[1]; dec_values = ALLOC_N(double, y_cols); x_nodes = ALLOC_N(struct svm_node, n_features + 1); x_nodes[n_features].index = -1; x_nodes[n_features].value = 0.0; for (i = 0; i < n_samples; i++) { for (j = 0; j < n_features; j++) { x_nodes[j].index = j + 1; x_nodes[j].value = (double)x_pt[i * n_features + j]; } svm_predict_values(model, x_nodes, dec_values); for (j = 0; j < y_cols; j++) { y_pt[i * y_cols + j] = dec_values[j]; } } xfree(x_nodes); xfree(dec_values); } xfree_svm_model(model); xfree_svm_parameter(param); return y_val; } |
.load_svm_model(filename) ⇒ Array
Load the SVM parameters and model from a text file with LIBSVM format.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# File 'ext/numo/libsvm/libsvmext.c', line 410 static VALUE load_svm_model(VALUE self, VALUE filename) { struct svm_model* model = svm_load_model(StringValuePtr(filename)); VALUE res = rb_ary_new2(2); VALUE param_hash = Qnil; VALUE model_hash = Qnil; if (model) { param_hash = svm_parameter_to_rb_hash(&(model->param)); model_hash = svm_model_to_rb_hash(model); svm_free_and_destroy_model(&model); } rb_ary_store(res, 0, param_hash); rb_ary_store(res, 1, model_hash); return res; } |
.predict(x, param, model) ⇒ Numo::DFloat
Predict class labels or values for given samples.
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# File 'ext/numo/libsvm/libsvmext.c', line 180 static VALUE predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) { struct svm_parameter* param; struct svm_model* model; struct svm_node* x_nodes; narray_t* x_nary; double* x_pt; size_t y_shape[1]; VALUE y_val; double* y_pt; int i, j; int n_samples; int n_features; /* Obtain C data structures. */ if (CLASS_OF(x_val) != numo_cDFloat) { x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val); } if (!RTEST(nary_check_contiguous(x_val))) { x_val = nary_dup(x_val); } GetNArray(x_val, x_nary); param = rb_hash_to_svm_parameter(param_hash); model = rb_hash_to_svm_model(model_hash); model->param = *param; /* Initialize some variables. */ n_samples = (int)NA_SHAPE(x_nary)[0]; n_features = (int)NA_SHAPE(x_nary)[1]; y_shape[0] = n_samples; y_val = rb_narray_new(numo_cDFloat, 1, y_shape); y_pt = (double*)na_get_pointer_for_write(y_val); x_pt = (double*)na_get_pointer_for_read(x_val); /* Predict values. */ x_nodes = ALLOC_N(struct svm_node, n_features + 1); x_nodes[n_features].index = -1; x_nodes[n_features].value = 0.0; for (i = 0; i < n_samples; i++) { for (j = 0; j < n_features; j++) { x_nodes[j].index = j + 1; x_nodes[j].value = (double)x_pt[i * n_features + j]; } y_pt[i] = svm_predict(model, x_nodes); } xfree(x_nodes); xfree_svm_model(model); xfree_svm_parameter(param); return y_val; } |
.predict_proba(x, param, model) ⇒ Numo::DFloat
Predict class probability for given samples. The model must have probability information calcualted in training procedure. The parameter ‘:probability’ set to 1 in training procedure.
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# File 'ext/numo/libsvm/libsvmext.c', line 340 static VALUE predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash) { struct svm_parameter* param; struct svm_model* model; struct svm_node* x_nodes; narray_t* x_nary; double* x_pt; size_t y_shape[2]; VALUE y_val = Qnil; double* y_pt; double* probs; int i, j; int n_samples; int n_features; param = rb_hash_to_svm_parameter(param_hash); model = rb_hash_to_svm_model(model_hash); model->param = *param; if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != NULL && model->probB != NULL) { /* Obtain C data structures. */ if (CLASS_OF(x_val) != numo_cDFloat) { x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val); } if (!RTEST(nary_check_contiguous(x_val))) { x_val = nary_dup(x_val); } GetNArray(x_val, x_nary); /* Initialize some variables. */ n_samples = (int)NA_SHAPE(x_nary)[0]; n_features = (int)NA_SHAPE(x_nary)[1]; y_shape[0] = n_samples; y_shape[1] = model->nr_class; y_val = rb_narray_new(numo_cDFloat, 2, y_shape); x_pt = (double*)na_get_pointer_for_read(x_val); y_pt = (double*)na_get_pointer_for_write(y_val); /* Predict values. */ probs = ALLOC_N(double, model->nr_class); x_nodes = ALLOC_N(struct svm_node, n_features + 1); x_nodes[n_features].index = -1; x_nodes[n_features].value = 0.0; for (i = 0; i < n_samples; i++) { for (j = 0; j < n_features; j++) { x_nodes[j].index = j + 1; x_nodes[j].value = (double)x_pt[i * n_features + j]; } svm_predict_probability(model, x_nodes, probs); for (j = 0; j < model->nr_class; j++) { y_pt[i * model->nr_class + j] = probs[j]; } } xfree(x_nodes); xfree(probs); } xfree_svm_model(model); xfree_svm_parameter(param); return y_val; } |
.save_svm_model(filename, param, model) ⇒ Boolean
Save the SVM parameters and model as a text file with LIBSVM format. The saved file can be used with the libsvm tools. Note that the svm_save_model saves only the parameters necessary for estimation with the trained model.
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# File 'ext/numo/libsvm/libsvmext.c', line 441 static VALUE save_svm_model(VALUE self, VALUE filename, VALUE param_hash, VALUE model_hash) { struct svm_parameter* param = rb_hash_to_svm_parameter(param_hash); struct svm_model* model = rb_hash_to_svm_model(model_hash); int res; model->param = *param; res = svm_save_model(StringValuePtr(filename), model); xfree_svm_model(model); xfree_svm_parameter(param); return res < 0 ? Qfalse : Qtrue; } |
.train(x, y, param) ⇒ Hash
Train the SVM model according to the given training data.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# File 'ext/numo/libsvm/libsvmext.c', line 21 static VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash) { struct svm_problem* problem; struct svm_parameter* param; narray_t* x_nary; double* x_pt; double* y_pt; int i, j; int n_samples; int n_features; struct svm_model* model; VALUE model_hash; /* Obtain C data structures. */ if (CLASS_OF(x_val) != numo_cDFloat) { x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val); } if (CLASS_OF(y_val) != numo_cDFloat) { y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val); } if (!RTEST(nary_check_contiguous(x_val))) { x_val = nary_dup(x_val); } if (!RTEST(nary_check_contiguous(y_val))) { y_val = nary_dup(y_val); } GetNArray(x_val, x_nary); param = rb_hash_to_svm_parameter(param_hash); /* Initialize some variables. */ n_samples = (int)NA_SHAPE(x_nary)[0]; n_features = (int)NA_SHAPE(x_nary)[1]; x_pt = (double*)na_get_pointer_for_read(x_val); y_pt = (double*)na_get_pointer_for_read(y_val); /* Prepare LIBSVM problem. */ problem = ALLOC(struct svm_problem); problem->l = n_samples; problem->x = ALLOC_N(struct svm_node*, n_samples); problem->y = ALLOC_N(double, n_samples); for (i = 0; i < n_samples; i++) { problem->x[i] = ALLOC_N(struct svm_node, n_features + 1); for (j = 0; j < n_features; j++) { problem->x[i][j].index = j + 1; problem->x[i][j].value = x_pt[i * n_features + j]; } problem->x[i][n_features].index = -1; problem->x[i][n_features].value = 0.0; problem->y[i] = y_pt[i]; } /* Perform training. */ svm_set_print_string_function(print_null); model = svm_train(problem, param); model_hash = svm_model_to_rb_hash(model); svm_free_and_destroy_model(&model); for (i = 0; i < n_samples; xfree(problem->x[i++])); xfree(problem->x); xfree(problem->y); xfree(problem); xfree_svm_parameter(param); return model_hash; } |