Class: GeoRuby::Base::Point
- Defined in:
- lib/geo_ruby/base/point.rb
Overview
Represents a point. It is in 3D if the Z coordinate is not nil
.
Constant Summary collapse
- DEG2RAD =
0.0174532925199433
Instance Attribute Summary collapse
-
#m ⇒ Object
Returns the value of attribute m.
-
#r ⇒ Object
readonly
Polar stuff www.engineeringtoolbox.com/converting-cartesian-polar-coordinates-d_1347.html rcoordinate.rubyforge.org/svn/point.rb outputs radium.
-
#t ⇒ Object
(also: #tet, #tetha)
readonly
radium and theta.
-
#x ⇒ Object
(also: #lon, #lng)
Returns the value of attribute x.
-
#y ⇒ Object
(also: #lat)
Returns the value of attribute y.
-
#z ⇒ Object
Returns the value of attribute z.
Attributes inherited from Geometry
Class Method Summary collapse
-
.from_coordinates(coords, srid = @@default_srid, with_z = false, with_m = false) ⇒ Object
creates a point from an array of coordinates.
-
.from_latlong(lat, lon, srid = @@default_srid) ⇒ Object
creates a point using coordinates like 22`34 23.45N.
-
.from_r_t(r, t, srid = @@default_srid) ⇒ Object
(also: from_rad_tet)
creates a point using polar coordinates r and theta(degrees).
-
.from_x_y(x, y, srid = @@default_srid) ⇒ Object
(also: from_lon_lat)
creates a point from the X and Y coordinates.
-
.from_x_y_m(x, y, m, srid = @@default_srid) ⇒ Object
(also: from_lon_lat_m)
creates a point from the X, Y and M coordinates.
-
.from_x_y_z(x, y, z, srid = @@default_srid) ⇒ Object
(also: from_lon_lat_z)
creates a point from the X, Y and Z coordinates.
-
.from_x_y_z_m(x, y, z, m, srid = @@default_srid) ⇒ Object
(also: from_lon_lat_z_m)
creates a point from the X, Y, Z and M coordinates.
Instance Method Summary collapse
-
#==(other_point) ⇒ Object
tests the equality of the position of points + m.
-
#as_latlong(opts = { }) ⇒ Object
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″.
-
#as_polar ⇒ Object
outputs an array containing polar distance and theta.
-
#binary_geometry_type ⇒ Object
WKB geometry type of a point.
-
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
binary representation of a point.
-
#bounding_box ⇒ Object
Bounding box in 2D/3D.
-
#ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula.
-
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates.
-
#georss_gml_representation(options) ⇒ Object
georss gml representation.
-
#georss_simple_representation(options) ⇒ Object
georss simple representation.
-
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation.
-
#initialize(srid = @@default_srid, with_z = false, with_m = false) ⇒ Point
constructor
A new instance of Point.
-
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are
:id
,:tesselate
,:extrude
,:altitude_mode
. - #m_range ⇒ Object
-
#rad ⇒ Object
radium and theta.
-
#set_x_y(x, y) ⇒ Object
(also: #set_lon_lat)
sets all coordinates of a 2D point in one call.
-
#set_x_y_z(x, y, z) ⇒ Object
(also: #set_lon_lat_z)
sets all coordinates in one call.
-
#spherical_distance(point, r = 6370997.0) ⇒ Object
Returns the sperical distance in meters, with a radius of 6471000m, with the haversine law.
-
#text_geometry_type ⇒ Object
WKT geometry type of a point.
-
#text_representation(allow_z = true, allow_m = true) ⇒ Object
text representation of a point.
- #theta_deg ⇒ Object
-
#theta_rad ⇒ Object
outputs theta.
Methods inherited from Geometry
#as_ewkb, #as_ewkt, #as_georss, #as_hex_ewkb, #as_hex_wkb, #as_kml, #as_wkb, #as_wkt, #envelope, from_ewkb, from_ewkt, from_georss, from_georss_with_tags, from_hex_ewkb, from_kml, kml_to_wkt
Constructor Details
#initialize(srid = @@default_srid, with_z = false, with_m = false) ⇒ Point
Returns a new instance of Point.
20 21 22 23 24 25 |
# File 'lib/geo_ruby/base/point.rb', line 20 def initialize(srid=@@default_srid,with_z=false,with_m=false) super(srid,with_z,with_m) @x = @y = 0.0 @z=0.0 #default value : meaningful if with_z @m=0.0 #default value : meaningful if with_m end |
Instance Attribute Details
#m ⇒ Object
Returns the value of attribute m.
9 10 11 |
# File 'lib/geo_ruby/base/point.rb', line 9 def m @m end |
#r ⇒ Object (readonly)
10 11 12 |
# File 'lib/geo_ruby/base/point.rb', line 10 def r @r end |
#t ⇒ Object (readonly) Also known as: tet, tetha
radium and theta
10 11 12 |
# File 'lib/geo_ruby/base/point.rb', line 10 def t @t end |
#x ⇒ Object Also known as: lon, lng
Returns the value of attribute x.
9 10 11 |
# File 'lib/geo_ruby/base/point.rb', line 9 def x @x end |
#y ⇒ Object Also known as: lat
Returns the value of attribute y.
9 10 11 |
# File 'lib/geo_ruby/base/point.rb', line 9 def y @y end |
#z ⇒ Object
Returns the value of attribute z.
9 10 11 |
# File 'lib/geo_ruby/base/point.rb', line 9 def z @z end |
Class Method Details
.from_coordinates(coords, srid = @@default_srid, with_z = false, with_m = false) ⇒ Object
creates a point from an array of coordinates
240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/geo_ruby/base/point.rb', line 240 def self.from_coordinates(coords,srid=@@default_srid,with_z=false,with_m=false) if ! (with_z or with_m) from_x_y(coords[0],coords[1],srid) elsif with_z and with_m from_x_y_z_m(coords[0],coords[1],coords[2],coords[3],srid) elsif with_z from_x_y_z(coords[0],coords[1],coords[2],srid) else from_x_y_m(coords[0],coords[1],coords[2],srid) end end |
.from_latlong(lat, lon, srid = @@default_srid) ⇒ Object
creates a point using coordinates like 22`34 23.45N
289 290 291 292 293 294 295 296 297 298 |
# File 'lib/geo_ruby/base/point.rb', line 289 def self.from_latlong(lat,lon,srid=@@default_srid) p = [lat,lon].map do |l| sig, deg, min, sec, cen = l.scan(/(-)?(\d{1,2})\D*(\d{2})\D*(\d{2})(\D*(\d{1,3}))?/).flatten sig = true if l =~ /W|S/ dec = deg.to_i + (min.to_i * 60 + "#{sec}#{cen}".to_f) / 3600 sig ? dec * -1 : dec end point= new(srid) point.set_x_y(p[0],p[1]) end |
.from_r_t(r, t, srid = @@default_srid) ⇒ Object Also known as: from_rad_tet
creates a point using polar coordinates r and theta(degrees)
280 281 282 283 284 285 286 |
# File 'lib/geo_ruby/base/point.rb', line 280 def self.from_r_t(r,t,srid=@@default_srid) t *= DEG2RAD x = r * Math.cos(t) y = r * Math.sin(t) point= new(srid) point.set_x_y(x,y) end |
.from_x_y(x, y, srid = @@default_srid) ⇒ Object Also known as: from_lon_lat
creates a point from the X and Y coordinates
253 254 255 256 |
# File 'lib/geo_ruby/base/point.rb', line 253 def self.from_x_y(x,y,srid=@@default_srid) point= new(srid) point.set_x_y(x,y) end |
.from_x_y_m(x, y, m, srid = @@default_srid) ⇒ Object Also known as: from_lon_lat_m
creates a point from the X, Y and M coordinates
265 266 267 268 269 |
# File 'lib/geo_ruby/base/point.rb', line 265 def self.from_x_y_m(x,y,m,srid=@@default_srid) point= new(srid,false,true) point.m=m point.set_x_y(x,y) end |
.from_x_y_z(x, y, z, srid = @@default_srid) ⇒ Object Also known as: from_lon_lat_z
creates a point from the X, Y and Z coordinates
259 260 261 262 |
# File 'lib/geo_ruby/base/point.rb', line 259 def self.from_x_y_z(x,y,z,srid=@@default_srid) point= new(srid,true) point.set_x_y_z(x,y,z) end |
.from_x_y_z_m(x, y, z, m, srid = @@default_srid) ⇒ Object Also known as: from_lon_lat_z_m
creates a point from the X, Y, Z and M coordinates
272 273 274 275 276 |
# File 'lib/geo_ruby/base/point.rb', line 272 def self.from_x_y_z_m(x,y,z,m,srid=@@default_srid) point= new(srid,true,true) point.m=m point.set_x_y_z(x,y,z) end |
Instance Method Details
#==(other_point) ⇒ Object
tests the equality of the position of points + m
125 126 127 128 129 130 131 |
# File 'lib/geo_ruby/base/point.rb', line 125 def ==(other_point) if other_point.class != self.class false else @x == other_point.x and @y == other_point.y and @z == other_point.z and @m == other_point.m end end |
#as_latlong(opts = { }) ⇒ Object
Outputs the geometry in coordinates format: 47°52′48″, -20°06′00″
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# File 'lib/geo_ruby/base/point.rb', line 191 def as_latlong(opts = { }) val = [] [x,y].each_with_index do |l,i| deg = l.to_i.abs min = (60 * (l.abs - deg)).to_i labs = (l * 1000000).abs / 1000000 sec = ((((labs - labs.to_i) * 60) - ((labs - labs.to_i) * 60).to_i) * 100000) * 60 / 100000 str = opts[:full] ? "%.i°%.2i′%05.2f″" : "%.i°%.2i′%02.0f″" if opts[:coord] out = str % [deg,min,sec] if i == 0 out += l > 0 ? "N" : "S" else out += l > 0 ? "E" : "W" end val << out else val << str % [l.to_i, min, sec] end end val.join(", ") end |
#as_polar ⇒ Object
outputs an array containing polar distance and theta
235 236 237 |
# File 'lib/geo_ruby/base/point.rb', line 235 def as_polar [r,t] end |
#binary_geometry_type ⇒ Object
WKB geometry type of a point
141 142 143 |
# File 'lib/geo_ruby/base/point.rb', line 141 def binary_geometry_type#:nodoc: 1 end |
#binary_representation(allow_z = true, allow_m = true) ⇒ Object
binary representation of a point. It lacks some headers to be a valid EWKB representation.
134 135 136 137 138 139 |
# File 'lib/geo_ruby/base/point.rb', line 134 def binary_representation(allow_z=true,allow_m=true) #:nodoc: bin_rep = [@x,@y].pack("EE") bin_rep += [@z].pack("E") if @with_z and allow_z #Default value so no crash bin_rep += [@m].pack("E") if @with_m and allow_m #idem bin_rep end |
#bounding_box ⇒ Object
Bounding box in 2D/3D. Returns an array of 2 points
112 113 114 115 116 117 118 |
# File 'lib/geo_ruby/base/point.rb', line 112 def bounding_box unless with_z [Point.from_x_y(@x,@y),Point.from_x_y(@x,@y)] else [Point.from_x_y_z(@x,@y,@z),Point.from_x_y_z(@x,@y,@z)] end end |
#ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) ⇒ Object
Ellipsoidal distance in m using Vincenty’s formula. Lifted entirely from Chris Veness’s code at www.movable-type.co.uk/scripts/LatLongVincenty.html and adapted for Ruby. Assumes the x and y are the lon and lat in degrees. a is the semi-major axis (equatorial radius) of the ellipsoid b is the semi-minor axis (polar radius) of the ellipsoid Their values by default are set to the ones of the WGS84 ellipsoid
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
# File 'lib/geo_ruby/base/point.rb', line 67 def ellipsoidal_distance(point, a = 6378137.0, b = 6356752.3142) f = (a-b) / a l = (point.lon - lon) * DEG2RAD u1 = Math.atan((1-f) * Math.tan(lat * DEG2RAD )) u2 = Math.atan((1-f) * Math.tan(point.lat * DEG2RAD)) sinU1 = Math.sin(u1) cosU1 = Math.cos(u1) sinU2 = Math.sin(u2) cosU2 = Math.cos(u2) lambda = l lambdaP = 2 * Math::PI iterLimit = 20 while (lambda-lambdaP).abs > 1e-12 && --iterLimit>0 sinLambda = Math.sin(lambda) cosLambda = Math.cos(lambda) sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda)) return 0 if sinSigma == 0 #coincident points cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda sigma = Math.atan2(sinSigma, cosSigma) sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma cosSqAlpha = 1 - sinAlpha*sinAlpha cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha cos2SigmaM = 0 if (cos2SigmaM.nan?) #equatorial line: cosSqAlpha=0 c = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha)) lambdaP = lambda lambda = l + (1-c) * f * sinAlpha * (sigma + c * sinSigma * (cos2SigmaM + c * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM))) end return NaN if iterLimit==0 #formula failed to converge uSq = cosSqAlpha * (a*a - b*b) / (b*b) a_bis = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))) b_bis = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq))) deltaSigma = b_bis * sinSigma*(cos2SigmaM + b_bis/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)- b_bis/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM))) b*a_bis*(sigma-deltaSigma) end |
#euclidian_distance(point) ⇒ Object
Return the distance between the 2D points (ie taking care only of the x and y coordinates), assuming the points are in projected coordinates. Euclidian distance in whatever unit the x and y ordinates are.
45 46 47 |
# File 'lib/geo_ruby/base/point.rb', line 45 def euclidian_distance(point) Math.sqrt((point.x - x)**2 + (point.y - y)**2) end |
#georss_gml_representation(options) ⇒ Object
georss gml representation
169 170 171 172 173 174 175 |
# File 'lib/geo_ruby/base/point.rb', line 169 def georss_gml_representation() #:nodoc: georss_ns = [:georss_ns] || "georss" gml_ns = [:gml_ns] || "gml" result = "<#{georss_ns}:where>\n<#{gml_ns}:Point>\n<#{gml_ns}:pos>" result += "#{y} #{x}" result += "</#{gml_ns}:pos>\n</#{gml_ns}:Point>\n</#{georss_ns}:where>\n" end |
#georss_simple_representation(options) ⇒ Object
georss simple representation
158 159 160 161 162 |
# File 'lib/geo_ruby/base/point.rb', line 158 def georss_simple_representation() #:nodoc: georss_ns = [:georss_ns] || "georss" geom_attr = [:geom_attr] "<#{georss_ns}:point#{geom_attr}>#{y} #{x}</#{georss_ns}:point>\n" end |
#georss_w3cgeo_representation(options) ⇒ Object
georss w3c representation
164 165 166 167 |
# File 'lib/geo_ruby/base/point.rb', line 164 def georss_w3cgeo_representation() #:nodoc: w3cgeo_ns = [:w3cgeo_ns] || "geo" "<#{w3cgeo_ns}:lat>#{y}</#{w3cgeo_ns}:lat>\n<#{w3cgeo_ns}:long>#{x}</#{w3cgeo_ns}:long>\n" end |
#kml_representation(options = {}) ⇒ Object
outputs the geometry in kml format : options are :id
, :tesselate
, :extrude
, :altitude_mode
. If the altitude_mode option is not present, the Z (if present) will not be output (since it won’t be used by GE anyway: clampToGround is the default)
180 181 182 183 184 185 186 187 |
# File 'lib/geo_ruby/base/point.rb', line 180 def kml_representation( = {}) #:nodoc: result = "<Point#{[:id_attr]}>\n" result += [:geom_data] if [:geom_data] result += "<coordinates>#{x},#{y}" result += ",#{[:fixed_z] || z ||0}" if [:allow_z] result += "</coordinates>\n" result += "</Point>\n" end |
#m_range ⇒ Object
120 121 122 |
# File 'lib/geo_ruby/base/point.rb', line 120 def m_range [@m,@m] end |
#rad ⇒ Object
radium and theta
16 17 18 |
# File 'lib/geo_ruby/base/point.rb', line 16 def r @r end |
#set_x_y(x, y) ⇒ Object Also known as: set_lon_lat
sets all coordinates of a 2D point in one call
36 37 38 39 40 |
# File 'lib/geo_ruby/base/point.rb', line 36 def set_x_y(x,y) @x=x @y=y self end |
#set_x_y_z(x, y, z) ⇒ Object Also known as: set_lon_lat_z
sets all coordinates in one call. Use the m
accessor to set the m.
27 28 29 30 31 32 |
# File 'lib/geo_ruby/base/point.rb', line 27 def set_x_y_z(x,y,z) @x=x @y=y @z=z self end |
#spherical_distance(point, r = 6370997.0) ⇒ Object
Returns the sperical distance in meters, with a radius of 6471000m, with the haversine law. Assumes x is the lon and y the lat, in degrees (Changed in version 1.1). The user has to make sure using this distance makes sense (ie she should be in latlon coordinates)
52 53 54 55 56 57 58 59 60 61 |
# File 'lib/geo_ruby/base/point.rb', line 52 def spherical_distance(point,r=6370997.0) radlat_from = lat * DEG2RAD radlat_to = point.lat * DEG2RAD dlat = (point.lat - lat) * DEG2RAD / 2 dlon = (point.lon - lon) * DEG2RAD / 2 a = Math.sin(dlat)**2 + Math.cos(radlat_from) * Math.cos(radlat_to) * Math.sin(dlon)**2 c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)) r * c end |
#text_geometry_type ⇒ Object
WKT geometry type of a point
153 154 155 |
# File 'lib/geo_ruby/base/point.rb', line 153 def text_geometry_type #:nodoc: "POINT" end |
#text_representation(allow_z = true, allow_m = true) ⇒ Object
text representation of a point
146 147 148 149 150 151 |
# File 'lib/geo_ruby/base/point.rb', line 146 def text_representation(allow_z=true,allow_m=true) #:nodoc: tex_rep = "#{@x} #{@y}" tex_rep += " #{@z}" if @with_z and allow_z tex_rep += " #{@m}" if @with_m and allow_m tex_rep end |
#theta_deg ⇒ Object
230 231 232 |
# File 'lib/geo_ruby/base/point.rb', line 230 def theta_deg theta_rad / DEG2RAD end |
#theta_rad ⇒ Object
outputs theta
221 222 223 224 225 226 227 228 |
# File 'lib/geo_ruby/base/point.rb', line 221 def theta_rad if @x.zero? @y < 0 ? 3 * Math::PI / 2 : Math::PI / 2 else th = Math.atan(@y/@x) th += 2 * Math::PI if r > 0 end end |