Class: NN
Defined Under Namespace
Classes: Affine, BatchNorm, Dropout, Identity, ReLU, Sigmoid, Softmax
Constant Summary collapse
- VERSION =
"2.4"
Instance Attribute Summary collapse
-
#activation ⇒ Object
Returns the value of attribute activation.
-
#batch_size ⇒ Object
Returns the value of attribute batch_size.
-
#betas ⇒ Object
Returns the value of attribute betas.
-
#biases ⇒ Object
Returns the value of attribute biases.
-
#dropout_ratio ⇒ Object
Returns the value of attribute dropout_ratio.
-
#gammas ⇒ Object
Returns the value of attribute gammas.
-
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
-
#momentum ⇒ Object
Returns the value of attribute momentum.
-
#training ⇒ Object
readonly
Returns the value of attribute training.
-
#weight_decay ⇒ Object
Returns the value of attribute weight_decay.
-
#weights ⇒ Object
Returns the value of attribute weights.
Class Method Summary collapse
Instance Method Summary collapse
- #accurate(x_test, y_test, tolerance = 0.5, &block) ⇒ Object
-
#initialize(num_nodes, learning_rate: 0.01, batch_size: 1, activation: %i(relu identity),, momentum: 0, weight_decay: 0, use_dropout: false, dropout_ratio: 0.5, use_batch_norm: false) ⇒ NN
constructor
A new instance of NN.
- #learn(x_train, y_train, &block) ⇒ Object
- #run(x) ⇒ Object
- #save(file_name) ⇒ Object
- #save_json(file_name) ⇒ Object
- #test(x_test, y_test, tolerance = 0.5, &block) ⇒ Object
- #train(x_train, y_train, epochs, func = nil, &block) ⇒ Object
Constructor Details
#initialize(num_nodes, learning_rate: 0.01, batch_size: 1, activation: %i(relu identity),, momentum: 0, weight_decay: 0, use_dropout: false, dropout_ratio: 0.5, use_batch_norm: false) ⇒ NN
Returns a new instance of NN.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/nn.rb', line 21 def initialize(num_nodes, learning_rate: 0.01, batch_size: 1, activation: %i(relu identity), momentum: 0, weight_decay: 0, use_dropout: false, dropout_ratio: 0.5, use_batch_norm: false) SFloat.srand(rand(2 ** 64)) @num_nodes = num_nodes @learning_rate = learning_rate @batch_size = batch_size @activation = activation @momentum = momentum @weight_decay = weight_decay @use_dropout = use_dropout @dropout_ratio = dropout_ratio @use_batch_norm = use_batch_norm init_weight_and_bias init_gamma_and_beta if @use_batch_norm @training = true init_layers end |
Instance Attribute Details
#activation ⇒ Object
Returns the value of attribute activation.
15 16 17 |
# File 'lib/nn.rb', line 15 def activation @activation end |
#batch_size ⇒ Object
Returns the value of attribute batch_size.
14 15 16 |
# File 'lib/nn.rb', line 14 def batch_size @batch_size end |
#betas ⇒ Object
Returns the value of attribute betas.
12 13 14 |
# File 'lib/nn.rb', line 12 def betas @betas end |
#biases ⇒ Object
Returns the value of attribute biases.
10 11 12 |
# File 'lib/nn.rb', line 10 def biases @biases end |
#dropout_ratio ⇒ Object
Returns the value of attribute dropout_ratio.
18 19 20 |
# File 'lib/nn.rb', line 18 def dropout_ratio @dropout_ratio end |
#gammas ⇒ Object
Returns the value of attribute gammas.
11 12 13 |
# File 'lib/nn.rb', line 11 def gammas @gammas end |
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
13 14 15 |
# File 'lib/nn.rb', line 13 def learning_rate @learning_rate end |
#momentum ⇒ Object
Returns the value of attribute momentum.
16 17 18 |
# File 'lib/nn.rb', line 16 def momentum @momentum end |
#training ⇒ Object (readonly)
Returns the value of attribute training.
19 20 21 |
# File 'lib/nn.rb', line 19 def training @training end |
#weight_decay ⇒ Object
Returns the value of attribute weight_decay.
17 18 19 |
# File 'lib/nn.rb', line 17 def weight_decay @weight_decay end |
#weights ⇒ Object
Returns the value of attribute weights.
9 10 11 |
# File 'lib/nn.rb', line 9 def weights @weights end |
Class Method Details
.load(file_name) ⇒ Object
46 47 48 |
# File 'lib/nn.rb', line 46 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(file_name) ⇒ Object
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/nn.rb', line 50 def self.load_json(file_name) json = JSON.parse(File.read(file_name)) nn = self.new(json["num_nodes"], learning_rate: json["learning_rate"], batch_size: json["batch_size"], activation: json["activation"].map(&:to_sym), momentum: json["momentum"], weight_decay: json["weight_decay"], use_dropout: json["use_dropout"], dropout_ratio: json["dropout_ratio"], use_batch_norm: json["use_batch_norm"], ) nn.weights = json["weights"].map{|weight| SFloat.cast(weight)} nn.biases = json["biases"].map{|bias| SFloat.cast(bias)} if json["use_batch_norm"] nn.gammas = json["gammas"].map{|gamma| SFloat.cast(gamma)} nn.betas = json["betas"].map{|beta| SFloat.cast(beta)} end nn end |
Instance Method Details
#accurate(x_test, y_test, tolerance = 0.5, &block) ⇒ Object
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# File 'lib/nn.rb', line 93 def accurate(x_test, y_test, tolerance = 0.5, &block) correct = 0 num_test_data = x_test.is_a?(SFloat) ? x_test.shape[0] : x_test.length (num_test_data.to_f / @batch_size).ceil.times do |i| x = SFloat.zeros(@batch_size, @num_nodes.first) y = SFloat.zeros(@batch_size, @num_nodes.last) @batch_size.times do |j| k = i * @batch_size + j break if k >= num_test_data if x_test.is_a?(SFloat) x[j, true] = x_test[k, true] y[j, true] = y_test[k, true] else x[j, true] = SFloat.cast(x_test[k]) y[j, true] = SFloat.cast(y_test[k]) end end x, y = block.call(x, y) if block out = forward(x, false) @batch_size.times do |j| vout = out[j, true] vy = y[j, true] case @activation[1] when :identity correct += 1 unless (NMath.sqrt((vout - vy) ** 2) < tolerance).to_a.include?(0) when :softmax correct += 1 if vout.max_index == vy.max_index end end end correct.to_f / num_test_data end |
#learn(x_train, y_train, &block) ⇒ Object
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# File 'lib/nn.rb', line 126 def learn(x_train, y_train, &block) if x_train.is_a?(SFloat) indexes = (0...x_train.shape[0]).to_a.sample(@batch_size) x = x_train[indexes, true] y = y_train[indexes, true] else indexes = (0...x_train.length).to_a.sample(@batch_size) x = SFloat.zeros(@batch_size, @num_nodes.first) y = SFloat.zeros(@batch_size, @num_nodes.last) @batch_size.times do |i| x[i, true] = SFloat.cast(x_train[indexes[i]]) y[i, true] = SFloat.cast(y_train[indexes[i]]) end end x, y = block.call(x, y) if block forward(x) backward(y) update_weight_and_bias update_gamma_and_beta if @use_batch_norm @layers[-1].loss(y) end |
#run(x) ⇒ Object
148 149 150 151 152 153 154 |
# File 'lib/nn.rb', line 148 def run(x) if x.is_a?(Array) forward(SFloat.cast(x), false).to_a else forward(x, false) end end |
#save(file_name) ⇒ Object
156 157 158 |
# File 'lib/nn.rb', line 156 def save(file_name) File.binwrite(file_name, Marshal.dump(self)) end |
#save_json(file_name) ⇒ Object
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# File 'lib/nn.rb', line 160 def save_json(file_name) json = { "version" => VERSION, "num_nodes" => @num_nodes, "learning_rate" => @learning_rate, "batch_size" => @batch_size, "activation" => @activation, "momentum" => @momentum, "weight_decay" => @weight_decay, "use_dropout" => @use_dropout, "dropout_ratio" => @dropout_ratio, "use_batch_norm" => @use_batch_norm, "weights" => @weights.map(&:to_a), "biases" => @biases.map(&:to_a), } if @use_batch_norm json_batch_norm = { "gammas" => @gammas, "betas" => @betas } json.merge!(json_batch_norm) end File.write(file_name, JSON.dump(json)) end |
#test(x_test, y_test, tolerance = 0.5, &block) ⇒ Object
87 88 89 90 91 |
# File 'lib/nn.rb', line 87 def test(x_test, y_test, tolerance = 0.5, &block) acc = accurate(x_test, y_test, tolerance, &block) puts "accurate: #{acc}" acc end |
#train(x_train, y_train, epochs, func = nil, &block) ⇒ Object
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/nn.rb', line 71 def train(x_train, y_train, epochs, func = nil, &block) num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length (1..epochs).each do |epoch| loss = nil (num_train_data.to_f / @batch_size).ceil.times do loss = learn(x_train, y_train, &func) if loss.nan? puts "loss is nan" return end end puts "epoch #{epoch}/#{epochs} loss: #{loss}" block.call(epoch) if block end end |