Class: Neuronet::ScaledNetwork
- Inherits:
-
FeedForward
- Object
- Array
- FeedForward
- Neuronet::ScaledNetwork
- Defined in:
- lib/neuronet.rb
Overview
Series Network for similar input/output values
Instance Attribute Summary collapse
-
#distribution ⇒ Object
Returns the value of attribute distribution.
Attributes inherited from FeedForward
#in, #learning, #out, #yang, #yin
Instance Method Summary collapse
-
#initialize(layers) ⇒ ScaledNetwork
constructor
A new instance of ScaledNetwork.
- #input ⇒ Object
- #output ⇒ Object
- #reset(inputs) ⇒ Object
- #set(inputs) ⇒ Object
- #train!(targets) ⇒ Object
Methods inherited from FeedForward
#exemplar, #mu, #muk, #num, #update
Constructor Details
#initialize(layers) ⇒ ScaledNetwork
Returns a new instance of ScaledNetwork.
320 321 322 323 |
# File 'lib/neuronet.rb', line 320 def initialize(layers) super(layers) @distribution = Gaussian.new end |
Instance Attribute Details
#distribution ⇒ Object
Returns the value of attribute distribution.
318 319 320 |
# File 'lib/neuronet.rb', line 318 def distribution @distribution end |
Instance Method Details
#input ⇒ Object
343 344 345 |
# File 'lib/neuronet.rb', line 343 def input @distribution.unmapped_input(super) end |
#output ⇒ Object
339 340 341 |
# File 'lib/neuronet.rb', line 339 def output @distribution.unmapped_output(super) end |
#reset(inputs) ⇒ Object
334 335 336 337 |
# File 'lib/neuronet.rb', line 334 def reset(inputs) @distribution.set(inputs) set(inputs) end |
#set(inputs) ⇒ Object
330 331 332 |
# File 'lib/neuronet.rb', line 330 def set(inputs) super(@distribution.mapped_input(inputs)) end |
#train!(targets) ⇒ Object
325 326 327 |
# File 'lib/neuronet.rb', line 325 def train!(targets) super(@distribution.mapped_output(targets)) end |