Class: Neuronet::LogNormal
Overview
Log-Normal Distribution
Instance Attribute Summary
Attributes inherited from Scale
Instance Method Summary collapse
-
#initialize(factor = 1.0, center = nil, spread = nil) ⇒ LogNormal
constructor
A new instance of LogNormal.
- #mapped(inputs) ⇒ Object (also: #mapped_input, #mapped_output)
- #set(inputs) ⇒ Object
- #unmapped(outputs) ⇒ Object (also: #unmapped_input, #unmapped_output)
Methods inherited from Gaussian
Methods inherited from Scale
#set_center, #set_init, #set_spread
Constructor Details
#initialize(factor = 1.0, center = nil, spread = nil) ⇒ LogNormal
Returns a new instance of LogNormal.
295 296 297 |
# File 'lib/neuronet.rb', line 295 def initialize(factor=1.0,center=nil,spread=nil) super(factor, center, spread) end |
Instance Method Details
#mapped(inputs) ⇒ Object Also known as: mapped_input, mapped_output
303 304 305 |
# File 'lib/neuronet.rb', line 303 def mapped(inputs) super( inputs.map{|value| Math::log(value)} ) end |
#set(inputs) ⇒ Object
299 300 301 |
# File 'lib/neuronet.rb', line 299 def set(inputs) super( inputs.map{|value| Math::log(value)} ) end |
#unmapped(outputs) ⇒ Object Also known as: unmapped_input, unmapped_output
309 310 311 |
# File 'lib/neuronet.rb', line 309 def unmapped(outputs) super(outputs).map{|value| Math::exp(value)} end |