Class: NanoGPT::Trainer
- Inherits:
-
Object
- Object
- NanoGPT::Trainer
- Defined in:
- lib/nano_gpt/trainer.rb
Overview
Training loop for GPT models
Instance Attribute Summary collapse
-
#best_val_loss ⇒ Object
readonly
Returns the value of attribute best_val_loss.
-
#config ⇒ Object
readonly
Returns the value of attribute config.
-
#iter_num ⇒ Object
readonly
Returns the value of attribute iter_num.
-
#model ⇒ Object
readonly
Returns the value of attribute model.
-
#optimizer ⇒ Object
readonly
Returns the value of attribute optimizer.
Instance Method Summary collapse
- #default_config ⇒ Object
- #estimate_loss ⇒ Object
-
#initialize(model:, data_loader:, config: {}) ⇒ Trainer
constructor
A new instance of Trainer.
- #load_checkpoint(path) ⇒ Object
- #save_checkpoint ⇒ Object
- #train ⇒ Object
Constructor Details
#initialize(model:, data_loader:, config: {}) ⇒ Trainer
Returns a new instance of Trainer.
10 11 12 13 14 15 16 17 18 19 20 |
# File 'lib/nano_gpt/trainer.rb', line 10 def initialize(model:, data_loader:, config: {}) @model = model @data_loader = data_loader @config = default_config.merge(config) @iter_num = 0 @best_val_loss = Float::INFINITY setup_optimizer setup_lr_scheduler end |
Instance Attribute Details
#best_val_loss ⇒ Object (readonly)
Returns the value of attribute best_val_loss.
8 9 10 |
# File 'lib/nano_gpt/trainer.rb', line 8 def best_val_loss @best_val_loss end |
#config ⇒ Object (readonly)
Returns the value of attribute config.
8 9 10 |
# File 'lib/nano_gpt/trainer.rb', line 8 def config @config end |
#iter_num ⇒ Object (readonly)
Returns the value of attribute iter_num.
8 9 10 |
# File 'lib/nano_gpt/trainer.rb', line 8 def iter_num @iter_num end |
#model ⇒ Object (readonly)
Returns the value of attribute model.
8 9 10 |
# File 'lib/nano_gpt/trainer.rb', line 8 def model @model end |
#optimizer ⇒ Object (readonly)
Returns the value of attribute optimizer.
8 9 10 |
# File 'lib/nano_gpt/trainer.rb', line 8 def optimizer @optimizer end |
Instance Method Details
#default_config ⇒ Object
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# File 'lib/nano_gpt/trainer.rb', line 22 def default_config { out_dir: "out", eval_interval: 250, log_interval: 10, eval_iters: 200, eval_only: false, always_save_checkpoint: false, # Optimizer learning_rate: 1e-3, weight_decay: 1e-1, beta1: 0.9, beta2: 0.99, grad_clip: 1.0, # LR scheduler decay_lr: true, warmup_iters: 100, lr_decay_iters: 5000, min_lr: 1e-4, # Training max_iters: 5000, gradient_accumulation_steps: 1, device: "cpu" } end |
#estimate_loss ⇒ Object
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# File 'lib/nano_gpt/trainer.rb', line 114 def estimate_loss @model.eval out = {} [:train, :val].each do |split| losses = [] @config[:eval_iters].times do x, y = @data_loader.get_batch(split) Torch.no_grad do _logits, loss = @model.call(x, targets: y) losses << loss.item end end out[split] = losses.sum / losses.size end @model.train out end |
#load_checkpoint(path) ⇒ Object
153 154 155 156 157 158 159 160 161 162 163 164 165 |
# File 'lib/nano_gpt/trainer.rb', line 153 def load_checkpoint(path) checkpoint = Torch.load(path) @model.load_state_dict(checkpoint["model"]) @iter_num = checkpoint["iter_num"] @best_val_loss = checkpoint["best_val_loss"] # Reinitialize optimizer (since we can't restore optimizer state in torch.rb) setup_optimizer puts "Loaded checkpoint from #{path} (iter #{@iter_num})" checkpoint end |
#save_checkpoint ⇒ Object
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# File 'lib/nano_gpt/trainer.rb', line 134 def save_checkpoint FileUtils.mkdir_p(@config[:out_dir]) path = File.join(@config[:out_dir], "ckpt.pt") # Note: torch.rb doesn't support optimizer.state_dict yet # We save model state and training metadata # Convert symbol keys to strings for Torch.save compatibility checkpoint = { "model" => @model.state_dict, "model_args" => stringify_keys(@model.config.to_h), "iter_num" => @iter_num, "best_val_loss" => @best_val_loss, "config" => stringify_keys(@config) } Torch.save(checkpoint, path) puts "Saved checkpoint to #{path}" end |
#train ⇒ Object
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/nano_gpt/trainer.rb', line 52 def train puts "Starting training..." puts "Tokens per iteration: #{tokens_per_iter}" @model.train x, y = @data_loader.get_batch(:train) t0 = Time.now while @iter_num <= @config[:max_iters] # Set learning rate for this iteration lr = @config[:decay_lr] ? @lr_scheduler.step(@optimizer, @iter_num) : @config[:learning_rate] # Evaluate and checkpoint if @iter_num % @config[:eval_interval] == 0 losses = estimate_loss puts "step #{@iter_num}: train loss #{losses[:train].round(4)}, val loss #{losses[:val].round(4)}" if losses[:val] < @best_val_loss || @config[:always_save_checkpoint] @best_val_loss = [losses[:val], @best_val_loss].min save_checkpoint if @iter_num > 0 end end break if @iter_num == 0 && @config[:eval_only] # Forward/backward with gradient accumulation @optimizer.zero_grad accumulated_loss = 0.0 @config[:gradient_accumulation_steps].times do |micro_step| logits, loss = @model.call(x, targets: y) loss = loss / @config[:gradient_accumulation_steps] accumulated_loss += loss.item loss.backward # Prefetch next batch x, y = @data_loader.get_batch(:train) end # Gradient clipping (manual implementation since torch.rb lacks clip_grad_norm_) if @config[:grad_clip] > 0.0 clip_grad_norm(@model.parameters, @config[:grad_clip]) end # Optimizer step @optimizer.step # Logging t1 = Time.now dt = t1 - t0 t0 = t1 if @iter_num % @config[:log_interval] == 0 puts "iter #{@iter_num}: loss #{accumulated_loss.round(4)}, time #{(dt * 1000).round(2)}ms, lr #{lr.round(6)}" end @iter_num += 1 end puts "Training complete!" end |