Class: MyMathGem::Optimization::Optimizer
- Inherits:
-
Object
- Object
- MyMathGem::Optimization::Optimizer
- Defined in:
- lib/my_math_gem/optimization.rb
Instance Attribute Summary collapse
-
#fx ⇒ Object
readonly
Returns the value of attribute fx.
-
#history ⇒ Object
readonly
Returns the value of attribute history.
-
#x ⇒ Object
readonly
Returns the value of attribute x.
Instance Method Summary collapse
-
#initialize(f:, grad: nil, x_init:, learning_rate: 0.01, max_iter: 1000, tol: 1e-6, method: :gd, momentum: 0.9, beta1: 0.9, beta2: 0.999, epsilon: 1e-8, lr_decay: nil, decay_rate: 0.99, verbose: false, early_stopping: true) ⇒ Optimizer
constructor
A new instance of Optimizer.
- #optimize ⇒ Object
Constructor Details
#initialize(f:, grad: nil, x_init:, learning_rate: 0.01, max_iter: 1000, tol: 1e-6, method: :gd, momentum: 0.9, beta1: 0.9, beta2: 0.999, epsilon: 1e-8, lr_decay: nil, decay_rate: 0.99, verbose: false, early_stopping: true) ⇒ Optimizer
Returns a new instance of Optimizer.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/my_math_gem/optimization.rb', line 6 def initialize(f:, grad: nil, x_init:, learning_rate: 0.01, max_iter: 1000, tol: 1e-6, method: :gd, momentum: 0.9, beta1: 0.9, beta2: 0.999, epsilon: 1e-8, lr_decay: nil, decay_rate: 0.99, verbose: false, early_stopping: true) @f = f @grad = grad @x = x_init.dup @learning_rate = learning_rate.to_f @max_iter = max_iter @tol = tol @method = method @momentum = momentum @beta1 = beta1 @beta2 = beta2 @epsilon = epsilon @lr_decay = lr_decay # :linear, :exponential, or nil @decay_rate = decay_rate @verbose = verbose @early_stopping = early_stopping @v = Array.new(@x.size, 0.0) # for momentum @m = Array.new(@x.size, 0.0) # for Adam @s = Array.new(@x.size, 0.0) # for Adam @t = 0 # timestep for Adam @grad ||= ->(x) { numerical_gradient(@f, x) } @history = [] end |
Instance Attribute Details
#fx ⇒ Object (readonly)
Returns the value of attribute fx.
4 5 6 |
# File 'lib/my_math_gem/optimization.rb', line 4 def fx @fx end |
#history ⇒ Object (readonly)
Returns the value of attribute history.
4 5 6 |
# File 'lib/my_math_gem/optimization.rb', line 4 def history @history end |
#x ⇒ Object (readonly)
Returns the value of attribute x.
4 5 6 |
# File 'lib/my_math_gem/optimization.rb', line 4 def x @x end |
Instance Method Details
#optimize ⇒ Object
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/my_math_gem/optimization.rb', line 35 def optimize prev_fx = nil @max_iter.times do |i| @t += 1 g = @grad.call(@x) raise ArgumentError, "Gradien harus array dengan panjang sama seperti x" unless valid_gradient?(g) case @method when :gd step = scalar_multiply(g, @learning_rate) @x = vector_subtract(@x, step) when :momentum @v = vector_add(scalar_multiply(@v, @momentum), scalar_multiply(g, 1 - @momentum)) step = scalar_multiply(@v, @learning_rate) @x = vector_subtract(@x, step) when :adam update_adam(g) else raise ArgumentError, "Metode optimasi tidak dikenal: #{@method}" end @fx = @f.call(@x) @history << { iteration: i + 1, x: @x.dup, fx: @fx } if @verbose puts "Iterasi #{i+1}: f(x) = #{@fx}, ||grad|| = #{vector_norm(g)}" end if prev_fx && @early_stopping change = (prev_fx - @fx).abs break if change < @tol end prev_fx = @fx apply_lr_decay(i) end @x end |