Module: MyMathGem::Calculus
- Defined in:
- lib/my_math_gem/calculus.rb
Class Method Summary collapse
-
.adaptive_integral(f, a, b, tol = 1e-6, max_recursion = 20) ⇒ Object
Integral adaptif sederhana menggunakan recursive Simpson’s rule.
-
.derivative(f, x, h = 1e-5, method = :central) ⇒ Object
Turunan numerik standar fungsi f di titik x Metode: :central (default), :forward, :backward.
-
.derivative_n(f, x, n = 1, h = 1e-5) ⇒ Object
Turunan orde n menggunakan finite difference (central difference).
-
.integral(f, a, b, n = 1000, method = :trapezoid) ⇒ Object
Integral numerik fungsi f dari a ke b Metode: :trapezoid (default) atau :simpson n = jumlah segmen, genap jika pakai Simpson.
-
.partial_derivative(f, args, var_idx, h = 1e-5) ⇒ Object
Turunan parsial fungsi multivariabel f, terhadap variabel index var_idx (0-based) args = array nilai input [x,y,z,…].
Class Method Details
.adaptive_integral(f, a, b, tol = 1e-6, max_recursion = 20) ⇒ Object
Integral adaptif sederhana menggunakan recursive Simpson’s rule
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/my_math_gem/calculus.rb', line 33 def self.adaptive_integral(f, a, b, tol=1e-6, max_recursion=20) raise ArgumentError, "f harus callable" unless f.respond_to?(:call) simpson = ->(fa, fm, fb, h) { h * (fa + 4*fm + fb) / 6.0 } recursive_adaptive = lambda do |f, a, b, fa, fm, fb, integral, tol, depth| mid = (a + b) / 2.0 f1 = f.call((a + mid) / 2.0) f2 = f.call((mid + b) / 2.0) left = simpson.call(fa, f1, fm, (mid - a)) right = simpson.call(fm, f2, fb, (b - mid)) if depth >= max_recursion || (left + right - integral).abs < 15 * tol return left + right + (left + right - integral) / 15.0 else left_int = recursive_adaptive.call(f, a, mid, fa, f1, fm, left, tol/2, depth + 1) right_int = recursive_adaptive.call(f, mid, b, fm, f2, fb, right, tol/2, depth + 1) left_int + right_int end end fa = f.call(a) fb = f.call(b) mid = (a + b) / 2.0 fm = f.call(mid) initial = simpson.call(fa, fm, fb, (b - a)) recursive_adaptive.call(f, a, b, fa, fm, fb, initial, tol, 0) end |
.derivative(f, x, h = 1e-5, method = :central) ⇒ Object
Turunan numerik standar fungsi f di titik x Metode: :central (default), :forward, :backward
64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/my_math_gem/calculus.rb', line 64 def self.derivative(f, x, h=1e-5, method=:central) raise ArgumentError, "f harus callable" unless f.respond_to?(:call) case method when :central (f.call(x + h) - f.call(x - h)) / (2 * h) when :forward (f.call(x + h) - f.call(x)) / h when :backward (f.call(x) - f.call(x - h)) / h else raise ArgumentError, "Method tidak valid. Gunakan :central, :forward, atau :backward" end end |
.derivative_n(f, x, n = 1, h = 1e-5) ⇒ Object
Turunan orde n menggunakan finite difference (central difference)
4 5 6 7 8 9 10 11 12 13 14 15 16 |
# File 'lib/my_math_gem/calculus.rb', line 4 def self.derivative_n(f, x, n=1, h=1e-5) raise ArgumentError, "n harus positif integer" unless n.is_a?(Integer) && n > 0 raise ArgumentError, "f harus callable" unless f.respond_to?(:call) # Turunan orde 1 if n == 1 return derivative(f, x, h, :central) end # Rekursif turunan orde lebih tinggi lower_order = ->(t) { derivative_n(f, t, n - 1, h) } derivative(lower_order, x, h, :central) end |
.integral(f, a, b, n = 1000, method = :trapezoid) ⇒ Object
Integral numerik fungsi f dari a ke b Metode: :trapezoid (default) atau :simpson n = jumlah segmen, genap jika pakai Simpson
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# File 'lib/my_math_gem/calculus.rb', line 82 def self.integral(f, a, b, n=1000, method=:trapezoid) raise ArgumentError, "f harus callable" unless f.respond_to?(:call) raise ArgumentError, "n harus positif integer" unless n.is_a?(Integer) && n > 0 raise ArgumentError, "Untuk Simpson, n harus genap" if method == :simpson && n.odd? case method when :trapezoid dx = (b - a).to_f / n total = 0.0 n.times do |i| x0 = a + i * dx x1 = x0 + dx total += 0.5 * (f.call(x0) + f.call(x1)) * dx end total when :simpson dx = (b - a).to_f / n sum = f.call(a) + f.call(b) (1...n).each do |i| x = a + i * dx weight = i.odd? ? 4 : 2 sum += weight * f.call(x) end (dx / 3) * sum else raise ArgumentError, "Method tidak valid. Gunakan :trapezoid atau :simpson" end end |
.partial_derivative(f, args, var_idx, h = 1e-5) ⇒ Object
Turunan parsial fungsi multivariabel f, terhadap variabel index var_idx (0-based) args = array nilai input [x,y,z,…]
20 21 22 23 24 25 26 27 28 29 30 |
# File 'lib/my_math_gem/calculus.rb', line 20 def self.partial_derivative(f, args, var_idx, h=1e-5) raise ArgumentError, "f harus callable" unless f.respond_to?(:call) raise ArgumentError, "args harus array" unless args.is_a?(Array) raise ArgumentError, "var_idx di luar jangkauan" unless var_idx.between?(0, args.length-1) args_forward = args.dup args_backward = args.dup args_forward[var_idx] += h args_backward[var_idx] -= h (f.call(*args_forward) - f.call(*args_backward)) / (2 * h) end |