Method: LMM#drop_fix_ef
- Defined in:
- lib/mixed_models/LMM.rb
#drop_fix_ef(variable) ⇒ Object
Drop one fixed effect predictor from the model; i.e. refit the model without one predictor variable. Works only if the model was fit via #from_daru or #from_formula.
Arguments
-
variable- name of the fixed effect to be dropped. An interaction effect can be specified as an Array of length two. An intercept term can be denoted as:intercept.
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
# File 'lib/mixed_models/LMM.rb', line 1137 def drop_fix_ef(variable) raise(NotImplementedError, "LMM#drop_fix_ef does not work if the model was not fit using a Daru::DataFrame") if @from_daru_args.nil? raise(ArgumentError, "variable is not one of the fixed effects of the linear mixed model") unless @from_daru_args[:fixed_effects].include? variable fe = Marshal.load(Marshal.dump(@from_daru_args[:fixed_effects])) variable_ind = fe.find_index variable fe.delete_at variable_ind return LMM.from_daru(response: @from_daru_args[:response], fixed_effects: fe, random_effects: @from_daru_args[:random_effects], grouping: @from_daru_args[:grouping], data: @from_daru_args[:data], weights: @model_data.weights, offset: @model_data.offset, reml: @reml, start_point: @optimization_result.start_point, epsilon: @optimization_result.epsilon, max_iterations: @optimization_result.max_iterations, formula: @formula) end |