Class: Mittsu::Matrix4
- Inherits:
-
Object
- Object
- Mittsu::Matrix4
- Defined in:
- lib/mittsu/math/matrix4.rb
Constant Summary collapse
- DIMENSIONS =
4
Instance Attribute Summary collapse
-
#elements ⇒ Object
Returns the value of attribute elements.
Instance Method Summary collapse
- #==(other) ⇒ Object
- #apply_to_vector3_array(array, offset = 0, length = array.length) ⇒ Object
- #clone ⇒ Object
- #compose(position, quaternion, scale) ⇒ Object
- #copy(m) ⇒ Object
- #copy_position(m) ⇒ Object
- #decompose(position, quaternion, scale) ⇒ Object
- #determinant ⇒ Object
- #extract_basis(x_axis, y_axis, z_axis) ⇒ Object
- #extract_rotation(m) ⇒ Object
- #flatten_to_array_offset(array, offset) ⇒ Object
- #from_array(array) ⇒ Object
- #identity ⇒ Object
-
#initialize ⇒ Matrix4
constructor
A new instance of Matrix4.
- #inverse(m, throw_on_invertable = false) ⇒ Object
- #look_at(eye, target, up) ⇒ Object
- #make_basis(x_axis, y_axis, z_axis) ⇒ Object
- #make_frustum(left, right, bottom, top, near, far) ⇒ Object
- #make_orthographic(left, right, top, bottom, near, far) ⇒ Object
- #make_perspective(fov, aspect, near, far) ⇒ Object
- #make_rotation_axis(axis, angle) ⇒ Object
- #make_rotation_from_euler(euler) ⇒ Object
- #make_rotation_from_quaternion(q) ⇒ Object
- #make_rotation_x(theta) ⇒ Object
- #make_rotation_y(theta) ⇒ Object
- #make_rotation_z(theta) ⇒ Object
- #make_scale(x, y, z) ⇒ Object
- #make_translation(x, y, z) ⇒ Object
- #max_scale_on_axis ⇒ Object
- #multiply(m) ⇒ Object
- #multiply_matrices(a, b) ⇒ Object
- #multiply_scalar(s) ⇒ Object
- #multiply_to_array(a, b, r) ⇒ Object
- #scale(v) ⇒ Object
- #set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) ⇒ Object
- #set_position(v) ⇒ Object
- #to_a ⇒ Object
- #transpose ⇒ Object
Constructor Details
#initialize ⇒ Matrix4
Returns a new instance of Matrix4.
9 10 11 12 13 14 15 16 |
# File 'lib/mittsu/math/matrix4.rb', line 9 def initialize() @elements = [ 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ] end |
Instance Attribute Details
#elements ⇒ Object
Returns the value of attribute elements.
5 6 7 |
# File 'lib/mittsu/math/matrix4.rb', line 5 def elements @elements end |
Instance Method Details
#==(other) ⇒ Object
568 569 570 |
# File 'lib/mittsu/math/matrix4.rb', line 568 def ==(other) other.elements == @elements end |
#apply_to_vector3_array(array, offset = 0, length = array.length) ⇒ Object
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# File 'lib/mittsu/math/matrix4.rb', line 277 def apply_to_vector3_array(array, offset = 0, length = array.length) v1 = Mittsu::Vector3.new i = 0 j = offset while i < length v1.x = array[j].to_f v1.y = array[j + 1].to_f v1.z = array[j + 2].to_f v1.apply_matrix4(self) array[j] = v1.x array[j + 1] = v1.y array[j + 2] = v1.z i += 3 j += 3 end array end |
#clone ⇒ Object
582 583 584 |
# File 'lib/mittsu/math/matrix4.rb', line 582 def clone Mittsu::Matrix4.new.from_array(self.elements) end |
#compose(position, quaternion, scale) ⇒ Object
476 477 478 479 480 481 |
# File 'lib/mittsu/math/matrix4.rb', line 476 def compose(position, quaternion, scale) self.make_rotation_from_quaternion(quaternion) self.scale(scale) self.set_position(position) self end |
#copy(m) ⇒ Object
37 38 39 40 |
# File 'lib/mittsu/math/matrix4.rb', line 37 def copy(m) self.from_array(m.elements) self end |
#copy_position(m) ⇒ Object
42 43 44 45 46 47 48 49 |
# File 'lib/mittsu/math/matrix4.rb', line 42 def copy_position(m) te = self.elements me = m.elements te[12] = me[12] te[13] = me[13] te[14] = me[14] self end |
#decompose(position, quaternion, scale) ⇒ Object
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# File 'lib/mittsu/math/matrix4.rb', line 483 def decompose(position, quaternion, scale) vector = Mittsu::Vector3.new matrix = Mittsu::Matrix4.new te = self.elements sx = vector.set(te[0], te[1], te[2]).length sy = vector.set(te[4], te[5], te[6]).length sz = vector.set(te[8], te[9], te[10]).length # if determine is negative, we need to invert one scale det = self.determinant if det < 0.0 sx = -sx end position.x = te[12] position.y = te[13] position.z = te[14] # scale the rotation part matrix.elements[0...15] = self.elements # at this point matrix is incomplete so we can't use .copy inv_sx = 1.0 / sx inv_sy = 1.0 / sy inv_sz = 1.0 / sz matrix.elements[0] *= inv_sx matrix.elements[1] *= inv_sx matrix.elements[2] *= inv_sx matrix.elements[4] *= inv_sy matrix.elements[5] *= inv_sy matrix.elements[6] *= inv_sy matrix.elements[8] *= inv_sz matrix.elements[9] *= inv_sz matrix.elements[10] *= inv_sz quaternion.set_from_rotation_matrix(matrix) scale.x = sx scale.y = sy scale.z = sz self end |
#determinant ⇒ Object
295 296 297 298 299 300 301 302 303 304 305 306 307 |
# File 'lib/mittsu/math/matrix4.rb', line 295 def determinant te = self.elements n11 = te[0]; n12 = te[4]; n13 = te[8]; n14 = te[12] n21 = te[1]; n22 = te[5]; n23 = te[9]; n24 = te[13] n31 = te[2]; n32 = te[6]; n33 = te[10]; n34 = te[14] n41 = te[3]; n42 = te[7]; n43 = te[11]; n44 = te[15] #TODO: make this more efficient #(based on http:#www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm) n41 * (n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31) end |
#extract_basis(x_axis, y_axis, z_axis) ⇒ Object
51 52 53 54 55 56 57 |
# File 'lib/mittsu/math/matrix4.rb', line 51 def extract_basis(x_axis, y_axis, z_axis) te = self.elements x_axis.set(te[0], te[1], te[2]) y_axis.set(te[4], te[5], te[6]) z_axis.set(te[8], te[9], te[10]) self end |
#extract_rotation(m) ⇒ Object
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# File 'lib/mittsu/math/matrix4.rb', line 69 def extract_rotation(m) v1 = Mittsu::Vector3.new te = self.elements me = m.elements scale_x = 1.0 / v1.set(me[0], me[1], me[2]).length scale_y = 1.0 / v1.set(me[4], me[5], me[6]).length scale_z = 1.0 / v1.set(me[8], me[9], me[10]).length te[0] = me[0] * scale_x te[1] = me[1] * scale_x te[2] = me[2] * scale_x te[4] = me[4] * scale_y te[5] = me[5] * scale_y te[6] = me[6] * scale_y te[8] = me[8] * scale_z te[9] = me[9] * scale_z te[10] = me[10] * scale_z self end |
#flatten_to_array_offset(array, offset) ⇒ Object
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# File 'lib/mittsu/math/matrix4.rb', line 320 def flatten_to_array_offset(array, offset) te = self.elements array[offset ] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] array[offset + 9] = te[9] array[offset + 10] = te[10] array[offset + 11] = te[11] array[offset + 12] = te[12] array[offset + 13] = te[13] array[offset + 14] = te[14] array[offset + 15] = te[15] array end |
#from_array(array) ⇒ Object
563 564 565 566 |
# File 'lib/mittsu/math/matrix4.rb', line 563 def from_array(array) self.elements[0..array.length] = array self end |
#identity ⇒ Object
27 28 29 30 31 32 33 34 35 |
# File 'lib/mittsu/math/matrix4.rb', line 27 def identity self.set( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#inverse(m, throw_on_invertable = false) ⇒ Object
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# File 'lib/mittsu/math/matrix4.rb', line 349 def inverse(m, throw_on_invertable = false) # based on http:#www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm te = @elements me = m.elements n11 = me[0]; n12 = me[4]; n13 = me[8]; n14 = me[12] n21 = me[1]; n22 = me[5]; n23 = me[9]; n24 = me[13] n31 = me[2]; n32 = me[6]; n33 = me[10]; n34 = me[14] n41 = me[3]; n42 = me[7]; n43 = me[11]; n44 = me[15] te[0] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44 te[4] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44 te[8] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44 te[12] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 te[1] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 te[5] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 te[9] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 te[13] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 te[2] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 te[6] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 te[10] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 te[14] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 te[3] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 te[7] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 te[11] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 te[15] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 det = n11 * te[0] + n21 * te[4] + n31 * te[8] + n41 * te[12] if det.zero? msg = "Mittsu::Matrix4#inverse: can't invert matrix, determinant is 0" if throw_on_invertable raise Error.new(msg) else # THREE.warn(msg) puts "WARNING: #{msg}" end self.identity return self end self.multiply_scalar(1.0 / det) self end |
#look_at(eye, target, up) ⇒ Object
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# File 'lib/mittsu/math/matrix4.rb', line 201 def look_at(eye, target, up) x = Mittsu::Vector3.new y = Mittsu::Vector3.new z = Mittsu::Vector3.new te = self.elements z.sub_vectors(eye, target).normalize if z.length.zero? z.z = 1.0 end x.cross_vectors(up, z).normalize if x.length.zero? z.x += 0.0001 x.cross_vectors(up, z).normalize end y.cross_vectors(z, x) te[0] = x.x; te[4] = y.x; te[8] = z.x te[1] = x.y; te[5] = y.y; te[9] = z.y te[2] = x.z; te[6] = y.z; te[10] = z.z self end |
#make_basis(x_axis, y_axis, z_axis) ⇒ Object
59 60 61 62 63 64 65 66 67 |
# File 'lib/mittsu/math/matrix4.rb', line 59 def make_basis(x_axis, y_axis, z_axis) self.set( x_axis.x, y_axis.x, z_axis.x, 0.0, x_axis.y, y_axis.y, z_axis.y, 0.0, x_axis.z, y_axis.z, z_axis.z, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_frustum(left, right, bottom, top, near, far) ⇒ Object
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
# File 'lib/mittsu/math/matrix4.rb', line 519 def make_frustum(left, right, bottom, top, near, far) left, right, bottom, top, near, far = left.to_f, right.to_f, bottom.to_f, top.to_f, near.to_f, far.to_f te = self.elements x = 2.0 * near / (right - left) y = 2.0 * near / (top - bottom) a = (right + left) / (right - left) b = (top + bottom) / (top - bottom) c = -(far + near) / (far - near) d = -2.0 * far * near / (far - near) te[0] = x; te[4] = 0.0; te[8] = a; te[12] = 0.0 te[1] = 0.0; te[5] = y; te[9] = b; te[13] = 0.0 te[2] = 0.0; te[6] = 0.0; te[10] = c; te[14] = d te[3] = 0.0; te[7] = 0.0; te[11] = -1.0; te[15] = 0.0 self end |
#make_orthographic(left, right, top, bottom, near, far) ⇒ Object
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# File 'lib/mittsu/math/matrix4.rb', line 546 def make_orthographic(left, right, top, bottom, near, far) left, right, top, bottom, near, far = left.to_f, right.to_f, top.to_f, bottom.to_f, near.to_f, far.to_f te = self.elements w = right - left h = top - bottom p = far - near x = (right + left) / w y = (top + bottom) / h z = (far + near) / p te[0] = 2.0 / w; te[4] = 0.0; te[8] = 0.0; te[12] = -x te[1] = 0.0; te[5] = 2.0 / h; te[9] = 0.0; te[13] = -y te[2] = 0.0; te[6] = 0.0; te[10] = -2.0 / p; te[14] = -z te[3] = 0.0; te[7] = 0.0; te[11] = 0.0; te[15] = 1.0 self end |
#make_perspective(fov, aspect, near, far) ⇒ Object
536 537 538 539 540 541 542 543 544 |
# File 'lib/mittsu/math/matrix4.rb', line 536 def make_perspective(fov, aspect, near, far) fov, aspect, near, far = fov.to_f, aspect.to_f, near.to_f, far.to_f ymax = near * Math.tan(Math.deg_to_rad(fov * 0.5)) ymin = -ymax xmin = ymin * aspect xmax = ymax * aspect self.make_frustum(xmin, xmax, ymin, ymax, near, far) end |
#make_rotation_axis(axis, angle) ⇒ Object
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# File 'lib/mittsu/math/matrix4.rb', line 450 def make_rotation_axis(axis, angle) # Based on http:#www.gamedev.net/reference/articles/article1199.asp c = Math.cos(angle) s = Math.sin(angle) t = 1.0 - c x, y, z = axis.x, axis.y, axis.z tx, ty = t * x, t * y self.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0.0, tx * y + s * z, ty * y + c, ty * z - s * x, 0.0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_from_euler(euler) ⇒ Object
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# File 'lib/mittsu/math/matrix4.rb', line 88 def make_rotation_from_euler(euler) te = self.elements x, y, z = euler.x, euler.y, euler.z a, b = Math.cos(x), Math.sin(x) c, d = Math.cos(y), Math.sin(y) e, f = Math.cos(z), Math.sin(z) if euler.order == 'XYZ' ae = a * e; af = a * f; be = b * e; bf = b * f te[0] = c * e te[4] = - c * f te[8] = d te[1] = af + be * d te[5] = ae - bf * d te[9] = - b * c te[2] = bf - ae * d te[6] = be + af * d te[10] = a * c elsif euler.order == 'YXZ' ce = c * e; cf = c * f; de = d * e; df = d * f te[0] = ce + df * b te[4] = de * b - cf te[8] = a * d te[1] = a * f te[5] = a * e te[9] = - b te[2] = cf * b - de te[6] = df + ce * b te[10] = a * c elsif euler.order == 'ZXY' ce = c * e; cf = c * f; de = d * e; df = d * f te[0] = ce - df * b te[4] = - a * f te[8] = de + cf * b te[1] = cf + de * b te[5] = a * e te[9] = df - ce * b te[2] = - a * d te[6] = b te[10] = a * c elsif euler.order == 'ZYX' ae = a * e; af = a * f; be = b * e; bf = b * f te[0] = c * e te[4] = be * d - af te[8] = ae * d + bf te[1] = c * f te[5] = bf * d + ae te[9] = af * d - be te[2] = - d te[6] = b * c te[10] = a * c elsif euler.order == 'YZX' ac = a * c; ad = a * d; bc = b * c; bd = b * d te[0] = c * e te[4] = bd - ac * f te[8] = bc * f + ad te[1] = f te[5] = a * e te[9] = - b * e te[2] = - d * e te[6] = ad * f + bc te[10] = ac - bd * f elsif euler.order == 'XZY' ac = a * c; ad = a * d; bc = b * c; bd = b * d te[0] = c * e te[4] = - f te[8] = d * e te[1] = ac * f + bd te[5] = a * e te[9] = ad * f - bc te[2] = bc * f - ad te[6] = b * e te[10] = bd * f + ac end # last column te[3] = 0.0 te[7] = 0.0 te[11] = 0.0 # bottom row te[12] = 0.0 te[13] = 0.0 te[14] = 0.0 te[15] = 1.0 self end |
#make_rotation_from_quaternion(q) ⇒ Object
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'lib/mittsu/math/matrix4.rb', line 173 def make_rotation_from_quaternion(q) te = self.elements x, y, z, w = q.x, q.y, q.z, q.w x2, y2, z2 = x + x, y + y, z + z xx, xy, xz = x * x2, x * y2, x * z2 yy, yz, zz = y * y2, y * z2, z * z2 wx, wy, wz = w * x2, w * y2, w * z2 te[0] = 1.0 - (yy + zz) te[4] = xy - wz te[8] = xz + wy te[1] = xy + wz te[5] = 1.0 - (xx + zz) te[9] = yz - wx te[2] = xz - wy te[6] = yz + wx te[10] = 1.0 - (xx + yy) # last column te[3] = 0.0 te[7] = 0.0 te[11] = 0.0 # bottom row te[12] = 0.0 te[13] = 0.0 te[14] = 0.0 te[15] = 1.0 self end |
#make_rotation_x(theta) ⇒ Object
417 418 419 420 421 422 423 424 425 426 |
# File 'lib/mittsu/math/matrix4.rb', line 417 def make_rotation_x(theta) c, s = Math.cos(theta), Math.sin(theta) self.set( 1.0, 0.0, 0.0, 0.0, 0.0, c, -s, 0.0, 0.0, s, c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_y(theta) ⇒ Object
428 429 430 431 432 433 434 435 436 437 |
# File 'lib/mittsu/math/matrix4.rb', line 428 def make_rotation_y(theta) c, s = Math.cos(theta), Math.sin(theta) self.set( c, 0.0, s, 0.0, 0.0, 1.0, 0.0, 0.0, -s, 0.0, c, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_rotation_z(theta) ⇒ Object
439 440 441 442 443 444 445 446 447 448 |
# File 'lib/mittsu/math/matrix4.rb', line 439 def make_rotation_z(theta) c, s = Math.cos(theta), Math.sin(theta) self.set( c, -s, 0.0, 0.0, s, c, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_scale(x, y, z) ⇒ Object
466 467 468 469 470 471 472 473 474 |
# File 'lib/mittsu/math/matrix4.rb', line 466 def make_scale(x, y, z) self.set( x.to_f, 0.0, 0.0, 0.0, 0.0, y.to_f, 0.0, 0.0, 0.0, 0.0, z.to_f, 0.0, 0.0, 0.0, 0.0, 1.0 ) self end |
#make_translation(x, y, z) ⇒ Object
407 408 409 410 411 412 413 414 415 |
# File 'lib/mittsu/math/matrix4.rb', line 407 def make_translation(x, y, z) self.set( 1.0, 0.0, 0.0, x.to_f, 0.0, 1.0, 0.0, y.to_f, 0.0, 0.0, 1.0, z.to_f, 0.0, 0.0, 0.0, 1.0 ) self end |
#max_scale_on_axis ⇒ Object
399 400 401 402 403 404 405 |
# File 'lib/mittsu/math/matrix4.rb', line 399 def max_scale_on_axis te = self.elements scale_x_sq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2] scale_y_sq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6] scale_z_sq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10] Math.sqrt([scale_x_sq, scale_y_sq, scale_z_sq].max) end |
#multiply(m) ⇒ Object
222 223 224 |
# File 'lib/mittsu/math/matrix4.rb', line 222 def multiply(m) self.multiply_matrices(self, m) end |
#multiply_matrices(a, b) ⇒ Object
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# File 'lib/mittsu/math/matrix4.rb', line 226 def multiply_matrices(a, b) ae = a.elements be = b.elements te = self.elements a11 = ae[0]; a12 = ae[4]; a13 = ae[8]; a14 = ae[12] a21 = ae[1]; a22 = ae[5]; a23 = ae[9]; a24 = ae[13] a31 = ae[2]; a32 = ae[6]; a33 = ae[10]; a34 = ae[14] a41 = ae[3]; a42 = ae[7]; a43 = ae[11]; a44 = ae[15] b11 = be[0]; b12 = be[4]; b13 = be[8]; b14 = be[12] b21 = be[1]; b22 = be[5]; b23 = be[9]; b24 = be[13] b31 = be[2]; b32 = be[6]; b33 = be[10]; b34 = be[14] b41 = be[3]; b42 = be[7]; b43 = be[11]; b44 = be[15] te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41 te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42 te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43 te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44 te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41 te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42 te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43 te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44 te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41 te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42 te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43 te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44 te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41 te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42 te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43 te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44 self end |
#multiply_scalar(s) ⇒ Object
267 268 269 270 271 272 273 274 275 |
# File 'lib/mittsu/math/matrix4.rb', line 267 def multiply_scalar(s) te = self.elements s = s.to_f te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s self end |
#multiply_to_array(a, b, r) ⇒ Object
257 258 259 260 261 262 263 264 265 |
# File 'lib/mittsu/math/matrix4.rb', line 257 def multiply_to_array(a, b, r) te = self.elements self.multiply_matrices(a, b) r[0] = te[0]; r[1] = te[1]; r[2] = te[2]; r[3] = te[3] r[4] = te[4]; r[5] = te[5]; r[6] = te[6]; r[7] = te[7] r[8] = te[8]; r[9] = te[9]; r[10] = te[10]; r[11] = te[11] r[12] = te[12]; r[13] = te[13]; r[14] = te[14]; r[15] = te[15] self end |
#scale(v) ⇒ Object
389 390 391 392 393 394 395 396 397 |
# File 'lib/mittsu/math/matrix4.rb', line 389 def scale(v) te = self.elements x = v.x; y = v.y; z = v.z te[0] *= x; te[4] *= y; te[8] *= z te[1] *= x; te[5] *= y; te[9] *= z te[2] *= x; te[6] *= y; te[10] *= z te[3] *= x; te[7] *= y; te[11] *= z self end |
#set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) ⇒ Object
18 19 20 21 22 23 24 25 |
# File 'lib/mittsu/math/matrix4.rb', line 18 def set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) te = self.elements te[0] = n11.to_f; te[4] = n12.to_f; te[8] = n13.to_f; te[12] = n14.to_f te[1] = n21.to_f; te[5] = n22.to_f; te[9] = n23.to_f; te[13] = n24.to_f te[2] = n31.to_f; te[6] = n32.to_f; te[10] = n33.to_f; te[14] = n34.to_f te[3] = n41.to_f; te[7] = n42.to_f; te[11] = n43.to_f; te[15] = n44.to_f self end |
#set_position(v) ⇒ Object
341 342 343 344 345 346 347 |
# File 'lib/mittsu/math/matrix4.rb', line 341 def set_position(v) te = self.elements te[12] = v.x te[13] = v.y te[14] = v.z self end |
#to_a ⇒ Object
572 573 574 575 576 577 578 579 580 |
# File 'lib/mittsu/math/matrix4.rb', line 572 def to_a te = self.elements [ te[0], te[1], te[2], te[3], te[4], te[5], te[6], te[7], te[8], te[9], te[10], te[11], te[12], te[13], te[14], te[15] ] end |
#transpose ⇒ Object
309 310 311 312 313 314 315 316 317 318 |
# File 'lib/mittsu/math/matrix4.rb', line 309 def transpose te = self.elements tmp = te[1]; te[1] = te[4]; te[4] = tmp tmp = te[2]; te[2] = te[8]; te[8] = tmp tmp = te[6]; te[6] = te[9]; te[9] = tmp tmp = te[3]; te[3] = te[12]; te[12] = tmp tmp = te[7]; te[7] = te[13]; te[13] = tmp tmp = te[11]; te[11] = te[14]; te[14] = tmp self end |