Class: Mittsu::Vector4

Inherits:
Object
  • Object
show all
Defined in:
lib/mittsu/math/vector4.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(x = 0.0, y = 0.0, z = 0.0, w = 1.0) ⇒ Vector4

Returns a new instance of Vector4.



6
7
8
# File 'lib/mittsu/math/vector4.rb', line 6

def initialize(x = 0.0, y = 0.0, z = 0.0, w = 1.0)
  self.set(x, y, z, w)
end

Instance Attribute Details

#wObject

Returns the value of attribute w.



5
6
7
# File 'lib/mittsu/math/vector4.rb', line 5

def w
  @w
end

#xObject

Returns the value of attribute x.



5
6
7
# File 'lib/mittsu/math/vector4.rb', line 5

def x
  @x
end

#yObject

Returns the value of attribute y.



5
6
7
# File 'lib/mittsu/math/vector4.rb', line 5

def y
  @y
end

#zObject

Returns the value of attribute z.



5
6
7
# File 'lib/mittsu/math/vector4.rb', line 5

def z
  @z
end

Instance Method Details

#==(v) ⇒ Object



377
378
379
# File 'lib/mittsu/math/vector4.rb', line 377

def ==(v)
  ((v.x == @x) && (v.y == @y) && (v.z == @z) && (v.w == @w))
end

#add(v) ⇒ Object



63
64
65
66
67
68
69
# File 'lib/mittsu/math/vector4.rb', line 63

def add(v)
  @x += v.x
  @y += v.y
  @z += v.z
  @w += v.w
  self
end

#add_scalar(s) ⇒ Object



71
72
73
74
75
76
77
# File 'lib/mittsu/math/vector4.rb', line 71

def add_scalar(s)
  @x += s
  @y += s
  @z += s
  @w += s
  self
end

#add_vectors(a, b) ⇒ Object



79
80
81
82
83
84
85
# File 'lib/mittsu/math/vector4.rb', line 79

def add_vectors(a, b)
  @x = a.x + b.x
  @y = a.y + b.y
  @z = a.z + b.z
  @w = a.w + b.w
  self
end

#apply_matrix4(m) ⇒ Object



119
120
121
122
123
124
125
126
127
# File 'lib/mittsu/math/vector4.rb', line 119

def apply_matrix4(m)
  x1, y1, z1, w1 = @x, @y, @z, @w
  e = m.elements
  @x = e[0] * x1 + e[4] * y1 + e[8] * z1 + e[12] * w1
  @y = e[1] * x1 + e[5] * y1 + e[9] * z1 + e[13] * w1
  @z = e[2] * x1 + e[6] * y1 + e[10] * z1 + e[14] * w1
  @w = e[3] * x1 + e[7] * y1 + e[11] * z1 + e[15] * w1
  self
end

#ceilObject



304
305
306
307
308
309
310
# File 'lib/mittsu/math/vector4.rb', line 304

def ceil
  @x = (@x).ceil
  @y = (@y).ceil
  @z = (@z).ceil
  @w = (@w).ceil
  self
end

#clamp(min, max) ⇒ Object



271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# File 'lib/mittsu/math/vector4.rb', line 271

def clamp(min, max)
  # This function assumes min < max, if self assumption isn't true it will not operate correctly
  if @x < min.x
    @x = min.x
  elsif @x > max.x
    @x = max.x
  end
  if @y < min.y
    @y = min.y
  elsif @y > max.y
    @y = max.y
  end
  if @z < min.z
    @z = min.z
  elsif @z > max.z
    @z = max.z
  end
  if @w < min.w
    @w = min.w
  elsif @w > max.w
    @w = max.w
  end
  self
end

#cloneObject



406
407
408
# File 'lib/mittsu/math/vector4.rb', line 406

def clone
  Mittsu::Vector4.new @x, @y, @z, @w
end

#copy(v) ⇒ Object



55
56
57
58
59
60
61
# File 'lib/mittsu/math/vector4.rb', line 55

def copy(v)
  @x = v.x
  @y = v.y
  @z = v.z
  @w = v.w || 1.0
  self
end

#divide_scalar(scalar) ⇒ Object



129
130
131
132
133
134
135
136
137
138
139
140
# File 'lib/mittsu/math/vector4.rb', line 129

def divide_scalar(scalar)
  if scalar != 0.0
    inv_scalar = 1.0 / scalar
    @x *= inv_scalar
    @y *= inv_scalar
    @z *= inv_scalar
    @w *= inv_scalar
  else
    @x, @y, @z, @w = 0.0, 0.0, 0.0, 1.0
  end
  self
end

#dot(v) ⇒ Object



336
337
338
# File 'lib/mittsu/math/vector4.rb', line 336

def dot(v)
  @x * v.x + @y * v.y + @z * v.z + @w * v.w
end

#floorObject



296
297
298
299
300
301
302
# File 'lib/mittsu/math/vector4.rb', line 296

def floor
  @x = (@x).floor
  @y = (@y).floor
  @z = (@z).floor
  @w = (@w).floor
  self
end

#from_array(array, offset = 0) ⇒ Object



381
382
383
384
385
386
387
# File 'lib/mittsu/math/vector4.rb', line 381

def from_array(array, offset = 0)
  @x = array[offset]
  @y = array[offset + 1]
  @z = array[offset + 2]
  @w = array[offset + 3]
  self
end

#from_attribute(attribute, index, offset = 0) ⇒ Object



397
398
399
400
401
402
403
404
# File 'lib/mittsu/math/vector4.rb', line 397

def from_attribute(attribute, index, offset = 0)
  index = index * attribute.itemSize + offset
  @x = attribute.array[index]
  @y = attribute.array[index + 1]
  @z = attribute.array[index + 2]
  @w = attribute.array[index + 3]
  self
end

#get_component(index) ⇒ Object



45
46
47
48
49
50
51
52
53
# File 'lib/mittsu/math/vector4.rb', line 45

def get_component(index)
  case index
  when 0 then return @x
  when 1 then return @y
  when 2 then return @z
  when 3 then return @w
  else raise IndexError.new
  end
end

#lengthObject



344
345
346
# File 'lib/mittsu/math/vector4.rb', line 344

def length
  Math.sqrt(@x * @x + @y * @y + @z * @z + @w * @w)
end

#length_manhattanObject



348
349
350
# File 'lib/mittsu/math/vector4.rb', line 348

def length_manhattan
  (@x).abs + (@y).abs + (@z).abs + (@w).abs
end

#length_sqObject



340
341
342
# File 'lib/mittsu/math/vector4.rb', line 340

def length_sq
  @x * @x + @y * @y + @z * @z + @w * @w
end

#lerp(v, alpha) ⇒ Object



364
365
366
367
368
369
370
# File 'lib/mittsu/math/vector4.rb', line 364

def lerp(v, alpha)
  @x += (v.x - @x) * alpha
  @y += (v.y - @y) * alpha
  @z += (v.z - @z) * alpha
  @w += (v.w - @w) * alpha
  self
end

#lerp_vectors(v1, v2, alpha) ⇒ Object



372
373
374
375
# File 'lib/mittsu/math/vector4.rb', line 372

def lerp_vectors(v1, v2, alpha)
  self.sub_vectors(v2, v1).multiply_scalar(alpha).add(v1)
  self
end

#max(v) ⇒ Object



255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# File 'lib/mittsu/math/vector4.rb', line 255

def max(v)
  if @x < v.x
    @x = v.x
  end
  if @y < v.y
    @y = v.y
  end
  if @z < v.z
    @z = v.z
  end
  if @w < v.w
    @w = v.w
  end
  self
end

#min(v) ⇒ Object



239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'lib/mittsu/math/vector4.rb', line 239

def min(v)
  if @x > v.x
    @x = v.x
  end
  if @y > v.y
    @y = v.y
  end
  if @z > v.z
    @z = v.z
  end
  if @w > v.w
    @w = v.w
  end
  self
end

#multiply_scalar(scalar) ⇒ Object



111
112
113
114
115
116
117
# File 'lib/mittsu/math/vector4.rb', line 111

def multiply_scalar(scalar)
  @x *= scalar
  @y *= scalar
  @z *= scalar
  @w *= scalar
  self
end

#negateObject



328
329
330
331
332
333
334
# File 'lib/mittsu/math/vector4.rb', line 328

def negate
  @x = - @x
  @y = - @y
  @z = - @z
  @w = - @w
  self
end

#normalizeObject



352
353
354
# File 'lib/mittsu/math/vector4.rb', line 352

def normalize
  self.divide_scalar(self.length)
end

#roundObject



312
313
314
315
316
317
318
# File 'lib/mittsu/math/vector4.rb', line 312

def round
  @x = (@x).round
  @y = (@y).round
  @z = (@z).round
  @w = (@w).round
  self
end

#round_to_zeroObject



320
321
322
323
324
325
326
# File 'lib/mittsu/math/vector4.rb', line 320

def round_to_zero
  @x = (@x < 0) ? (@x).ceil : (@x).floor
  @y = (@y < 0) ? (@y).ceil : (@y).floor
  @z = (@z < 0) ? (@z).ceil : (@z).floor
  @w = (@w < 0) ? (@w).ceil : (@w).floor
  self
end

#set(x, y, z, w) ⇒ Object



10
11
12
13
# File 'lib/mittsu/math/vector4.rb', line 10

def set(x, y, z, w)
  @x, @y, @z, @w = x.to_f, y.to_f, z.to_f, w.to_f
  self
end

#set_axis_angle_from_quaternion(q) ⇒ Object



142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# File 'lib/mittsu/math/vector4.rb', line 142

def set_axis_angle_from_quaternion(q)
  # http:#www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
  # q is assumed to be normalized
  @w = 2.0 * Math.acos(q.w)
  s = Math.sqrt(1.0 - q.w * q.w)
  if s < 0.0001
     @x = 1.0
     @y = 0.0
     @z = 0.0
  else
     @x = q.x / s
     @y = q.y / s
     @z = q.z / s
  end
  self
end

#set_axis_angle_from_rotation_matrix(m) ⇒ Object



159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# File 'lib/mittsu/math/vector4.rb', line 159

def set_axis_angle_from_rotation_matrix(m)
  # http:#www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
  # assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
  angle, x1, y1, z1 = nil    # variables for result
  epsilon = 0.01    # margin to allow for rounding errors
  epsilon2 = 0.1    # margin to distinguish between 0 and 180 degrees
  te = m.elements
  m11, m12, m13 = te[0], te[4], te[8]
  m21, m22, m23 = te[1], te[5], te[9]
  m31, m32, m33 = te[2], te[6], te[10]
  if (((m12 - m21).abs < epsilon) &&
      ((m13 - m31).abs < epsilon) &&
      ((m23 - m32).abs < epsilon))
    # singularity found
    # first check for identity matrix which must have +1 for all terms
    # in leading diagonal and zero in other terms
    if (((m12 + m21).abs < epsilon2) &&
        ((m13 + m31).abs < epsilon2) &&
        ((m23 + m32).abs < epsilon2) &&
        ((m11 + m22 + m33 - 3).abs < epsilon2))
      # self singularity is identity matrix so angle = 0
      self.set(1, 0, 0, 0)
      return self # zero angle, arbitrary axis
    end
    # otherwise self singularity is angle = 180
    angle = Math::PI
    xx = (m11 + 1.0) / 2.0
    yy = (m22 + 1.0) / 2.0
    zz = (m33 + 1.0) / 2.0
    xy = (m12 + m21) / 4.0
    xz = (m13 + m31) / 4.0
    yz = (m23 + m32) / 4.0
    if (xx > yy) && (xx > zz) # m11 is the largest diagonal term
      if xx < epsilon
        x1 = 0.0
        y1 = 0.707106781
        z1 = 0.707106781
      else
        x1 = Math.sqrt(xx)
        y1 = xy / x1
        z1 = xz / x1
      end
    elsif yy > zz # m22 is the largest diagonal term
      if yy < epsilon
        x1 = 0.707106781
        y1 = 0.0
        z1 = 0.707106781
      else
        y1 = Math.sqrt(yy)
        x1 = xy / y1
        z1 = yz / y1
      end
    else # m33 is the largest diagonal term so base result on self
      if zz < epsilon
        x1 = 0.707106781
        y1 = 0.707106781
        z1 = 0.0
      else
        z1 = Math.sqrt(zz)
        x1 = xz / z1
        y1 = yz / z1
      end
    end
    self.set(x1, y1, z1, angle)
    return self # return 180 deg rotation
  end
  # as we have reached here there are no singularities so we can handle normally
  s = Math.sqrt((m32 - m23) * (m32 - m23) +
    (m13 - m31) * (m13 - m31) +
    (m21 - m12) * (m21 - m12)) # used to normalize
  s = 1.0 if (s.abs < 0.001)
  # prevent divide by zero, should not happen if matrix is orthogonal and should be
  # caught by singularity test above, but I've left it in just in case
  @x = (m32 - m23) / s
  @y = (m13 - m31) / s
  @z = (m21 - m12) / s
  @w = Math.acos((m11 + m22 + m33 - 1.0) / 2.0)
  self
end

#set_component(index, value) ⇒ Object



35
36
37
38
39
40
41
42
43
# File 'lib/mittsu/math/vector4.rb', line 35

def set_component(index, value)
  case index
  when 0 then @x = value.to_f
  when 1 then @y = value.to_f
  when 2 then @z = value.to_f
  when 3 then @w = value.to_f
  else raise IndexError.new
  end
end

#set_length(l) ⇒ Object



356
357
358
359
360
361
362
# File 'lib/mittsu/math/vector4.rb', line 356

def set_length(l)
  old_length = self.length
  if old_length != 0 && l != old_length
    self.multiply_scalar(l / old_length)
  end
  self
end

#set_w(w) ⇒ Object



30
31
32
33
# File 'lib/mittsu/math/vector4.rb', line 30

def set_w(w)
  @w = w.to_f
  self
end

#set_x(x) ⇒ Object



15
16
17
18
# File 'lib/mittsu/math/vector4.rb', line 15

def set_x(x)
  @x = x.to_f
  self
end

#set_y(y) ⇒ Object



20
21
22
23
# File 'lib/mittsu/math/vector4.rb', line 20

def set_y(y)
  @y = y.to_f
  self
end

#set_z(z) ⇒ Object



25
26
27
28
# File 'lib/mittsu/math/vector4.rb', line 25

def set_z(z)
  @z = z.to_f
  self
end

#sub(v) ⇒ Object



87
88
89
90
91
92
93
# File 'lib/mittsu/math/vector4.rb', line 87

def sub(v)
  @x -= v.x
  @y -= v.y
  @z -= v.z
  @w -= v.w
  self
end

#sub_scalar(s) ⇒ Object



95
96
97
98
99
100
101
# File 'lib/mittsu/math/vector4.rb', line 95

def sub_scalar(s)
  @x -= s
  @y -= s
  @z -= s
  @w -= s
  self
end

#sub_vectors(a, b) ⇒ Object



103
104
105
106
107
108
109
# File 'lib/mittsu/math/vector4.rb', line 103

def sub_vectors(a, b)
  @x = a.x - b.x
  @y = a.y - b.y
  @z = a.z - b.z
  @w = a.w - b.w
  self
end

#to_array(array = [], offset = 0) ⇒ Object



389
390
391
392
393
394
395
# File 'lib/mittsu/math/vector4.rb', line 389

def to_array(array = [], offset = 0)
  array[offset] = @x
  array[offset + 1] = @y
  array[offset + 2] = @z
  array[offset + 3] = @w
  array
end

#to_sObject



410
411
412
# File 'lib/mittsu/math/vector4.rb', line 410

def to_s
  "[#{x}, #{y}, #{z}, #{w}]"
end