Class: Matrix

Inherits:
Object
  • Object
show all
Extended by:
ConversionHelper
Includes:
Enumerable, ExceptionForMatrix, CoercionHelper
Defined in:
lib/matrix.rb,
lib/matrix/version.rb,
lib/matrix/lup_decomposition.rb,
lib/matrix/eigenvalue_decomposition.rb

Overview

frozen_string_literal: false

Defined Under Namespace

Modules: CoercionHelper, ConversionHelper Classes: EigenvalueDecomposition, LUPDecomposition, Scalar

Constant Summary collapse

SELECTORS =
{all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
VERSION =
"0.3.0"

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from CoercionHelper

check_int, check_range, coerce_to, coerce_to_int, coerce_to_matrix

Constructor Details

#initialize(rows, column_count = rows[0].size) ⇒ Matrix

Matrix.new is private; use ::rows, ::columns, ::[], etc… to create.


322
323
324
325
326
327
328
# File 'lib/matrix.rb', line 322

def initialize(rows, column_count = rows[0].size)
  # No checking is done at this point. rows must be an Array of Arrays.
  # column_count must be the size of the first row, if there is one,
  # otherwise it *must* be specified and can be any integer >= 0
  @rows = rows
  @column_count = column_count
end

Instance Attribute Details

#column_countObject (readonly) Also known as: column_size

Returns the number of columns.


456
457
458
# File 'lib/matrix.rb', line 456

def column_count
  @column_count
end

Class Method Details

.[](*rows) ⇒ Object

Creates a matrix where each argument is a row.

Matrix[ [25, 93], [-1, 66] ]
#   =>  25 93
#       -1 66

78
79
80
# File 'lib/matrix.rb', line 78

def Matrix.[](*rows)
  rows(rows, false)
end

.build(row_count, column_count = row_count) ⇒ Object

Creates a matrix of size row_count x column_count. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.

m = Matrix.build(2, 4) {|row, col| col - row }
#  => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
#  => a 3x3 matrix with random elements

Raises:

  • (ArgumentError)

123
124
125
126
127
128
129
130
131
132
133
134
# File 'lib/matrix.rb', line 123

def Matrix.build(row_count, column_count = row_count)
  row_count = CoercionHelper.coerce_to_int(row_count)
  column_count = CoercionHelper.coerce_to_int(column_count)
  raise ArgumentError if row_count < 0 || column_count < 0
  return to_enum :build, row_count, column_count unless block_given?
  rows = Array.new(row_count) do |i|
    Array.new(column_count) do |j|
      yield i, j
    end
  end
  new rows, column_count
end

.column_vector(column) ⇒ Object

Creates a single-column matrix where the values of that column are as given in column.

Matrix.column_vector([4,5,6])
#  => 4
#     5
#     6

209
210
211
212
# File 'lib/matrix.rb', line 209

def Matrix.column_vector(column)
  column = convert_to_array(column)
  new [column].transpose, 1
end

.columns(columns) ⇒ Object

Creates a matrix using columns as an array of column vectors.

Matrix.columns([[25, 93], [-1, 66]])
#   =>  25 -1
#       93 66

108
109
110
# File 'lib/matrix.rb', line 108

def Matrix.columns(columns)
  rows(columns, false).transpose
end

.combine(*matrices) ⇒ Object

:call-seq:

Matrix.combine(*matrices) { |*elements| ... }

Create a matrix by combining matrices entrywise, using the given block

x = Matrix[[6, 6], [4, 4]]
y = Matrix[[1, 2], [3, 4]]
Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# File 'lib/matrix.rb', line 288

def Matrix.combine(*matrices)
  return to_enum(__method__, *matrices) unless block_given?

  return Matrix.empty if matrices.empty?
  matrices.map!(&CoercionHelper.method(:coerce_to_matrix))
  x = matrices.first
  matrices.each do |m|
    raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count
  end

  rows = Array.new(x.row_count) do |i|
    Array.new(x.column_count) do |j|
      yield matrices.map{|m| m[i,j]}
    end
  end
  new rows, x.column_count
end

.diagonal(*values) ⇒ Object

Creates a matrix where the diagonal elements are composed of values.

Matrix.diagonal(9, 5, -3)
#  =>  9  0  0
#      0  5  0
#      0  0 -3

143
144
145
146
147
148
149
150
151
152
# File 'lib/matrix.rb', line 143

def Matrix.diagonal(*values)
  size = values.size
  return Matrix.empty if size == 0
  rows = Array.new(size) {|j|
    row = Array.new(size, 0)
    row[j] = values[j]
    row
  }
  new rows
end

.empty(row_count = 0, column_count = 0) ⇒ Object

Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.

m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
#  => true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
#  => true
m * n
#  => Matrix[[0, 0, 0], [0, 0, 0]]

Raises:

  • (ArgumentError)

227
228
229
230
231
232
# File 'lib/matrix.rb', line 227

def Matrix.empty(row_count = 0, column_count = 0)
  raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
  raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0

  new([[]]*row_count, column_count)
end

.hstack(x, *matrices) ⇒ Object

Create a matrix by stacking matrices horizontally

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# File 'lib/matrix.rb', line 262

def Matrix.hstack(x, *matrices)
  x = CoercionHelper.coerce_to_matrix(x)
  result = x.send(:rows).map(&:dup)
  total_column_count = x.column_count
  matrices.each do |m|
    m = CoercionHelper.coerce_to_matrix(m)
    if m.row_count != x.row_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
    end
    result.each_with_index do |row, i|
      row.concat m.send(:rows)[i]
    end
    total_column_count += m.column_count
  end
  new result, total_column_count
end

.identity(n) ⇒ Object Also known as: unit, I

Creates an n by n identity matrix.

Matrix.identity(2)
#  => 1 0
#     0 1

171
172
173
# File 'lib/matrix.rb', line 171

def Matrix.identity(n)
  scalar(n, 1)
end

.row_vector(row) ⇒ Object

Creates a single-row matrix where the values of that row are as given in row.

Matrix.row_vector([4,5,6])
#  => 4 5 6

196
197
198
199
# File 'lib/matrix.rb', line 196

def Matrix.row_vector(row)
  row = convert_to_array(row)
  new [row]
end

.rows(rows, copy = true) ⇒ Object

Creates a matrix where rows is an array of arrays, each of which is a row of the matrix. If the optional argument copy is false, use the given arrays as the internal structure of the matrix without copying.

Matrix.rows([[25, 93], [-1, 66]])
#   =>  25 93
#       -1 66

90
91
92
93
94
95
96
97
98
99
100
# File 'lib/matrix.rb', line 90

def Matrix.rows(rows, copy = true)
  rows = convert_to_array(rows, copy)
  rows.map! do |row|
    convert_to_array(row, copy)
  end
  size = (rows[0] || []).size
  rows.each do |row|
    raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
  end
  new rows, size
end

.scalar(n, value) ⇒ Object

Creates an n by n diagonal matrix where each diagonal element is value.

Matrix.scalar(2, 5)
#  => 5 0
#     0 5

161
162
163
# File 'lib/matrix.rb', line 161

def Matrix.scalar(n, value)
  diagonal(*Array.new(n, value))
end

.vstack(x, *matrices) ⇒ Object

Create a matrix by stacking matrices vertically

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]

241
242
243
244
245
246
247
248
249
250
251
252
# File 'lib/matrix.rb', line 241

def Matrix.vstack(x, *matrices)
  x = CoercionHelper.coerce_to_matrix(x)
  result = x.send(:rows).map(&:dup)
  matrices.each do |m|
    m = CoercionHelper.coerce_to_matrix(m)
    if m.column_count != x.column_count
      raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
    end
    result.concat(m.send(:rows))
  end
  new result, x.column_count
end

.zero(row_count, column_count = row_count) ⇒ Object

Creates a zero matrix.

Matrix.zero(2)
#  => 0 0
#     0 0

185
186
187
188
# File 'lib/matrix.rb', line 185

def Matrix.zero(row_count, column_count = row_count)
  rows = Array.new(row_count){Array.new(column_count, 0)}
  new rows, column_count
end

Instance Method Details

#*(m) ⇒ Object

Matrix multiplication.

Matrix[[2,4], [6,8]] * Matrix.identity(2)
#  => 2 4
#     6 8

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
# File 'lib/matrix.rb', line 1057

def *(m) # m is matrix or vector or number
  case(m)
  when Numeric
    new_rows = @rows.collect {|row|
      row.collect {|e| e * m }
    }
    return new_matrix new_rows, column_count
  when Vector
    m = self.class.column_vector(m)
    r = self * m
    return r.column(0)
  when Matrix
    raise ErrDimensionMismatch if column_count != m.row_count
    m_rows = m.rows
    new_rows = rows.map do |row_i|
      Array.new(m.column_count) do |j|
        vij = 0
        column_count.times do |k|
          vij += row_i[k] * m_rows[k][j]
        end
        vij
      end
    end
    return new_matrix new_rows, m.column_count
  else
    return apply_through_coercion(m, __method__)
  end
end

#**(other) ⇒ Object

Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.

Matrix[[7,6], [3,9]] ** 2
#  => 67 96
#     48 99

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
# File 'lib/matrix.rb', line 1236

def **(other)
  case other
  when Integer
    x = self
    if other <= 0
      x = self.inverse
      return self.class.identity(self.column_count) if other == 0
      other = -other
    end
    z = nil
    loop do
      z = z ? z * x : x if other[0] == 1
      return z if (other >>= 1).zero?
      x *= x
    end
  when Numeric
    v, d, v_inv = eigensystem
    v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
  else
    raise ErrOperationNotDefined, ["**", self.class, other.class]
  end
end

#+(m) ⇒ Object

Matrix addition.

Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
#  =>  6  0
#     -4 12

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
# File 'lib/matrix.rb', line 1092

def +(m)
  case m
  when Numeric
    raise ErrOperationNotDefined, ["+", self.class, m.class]
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end

  raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] + m[i, j]
    }
  }
  new_matrix rows, column_count
end

#[email protected]Object


1259
1260
1261
# File 'lib/matrix.rb', line 1259

def [email protected]
  self
end

#-(m) ⇒ Object

Matrix subtraction.

Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
#  => -8  2
#      8  1

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
# File 'lib/matrix.rb', line 1119

def -(m)
  case m
  when Numeric
    raise ErrOperationNotDefined, ["-", self.class, m.class]
  when Vector
    m = self.class.column_vector(m)
  when Matrix
  else
    return apply_through_coercion(m, __method__)
  end

  raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count

  rows = Array.new(row_count) {|i|
    Array.new(column_count) {|j|
      self[i, j] - m[i, j]
    }
  }
  new_matrix rows, column_count
end

#[email protected]Object

Unary matrix negation.

-Matrix[[1,5], [4,2]]
# => -1 -5
#    -4 -2

1268
1269
1270
# File 'lib/matrix.rb', line 1268

def [email protected]
  collect {|e| -e }
end

#/(other) ⇒ Object

Matrix division (multiplication by the inverse).

Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
#  => -7  1
#     -3 -6

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
# File 'lib/matrix.rb', line 1146

def /(other)
  case other
  when Numeric
    rows = @rows.collect {|row|
      row.collect {|e| e / other }
    }
    return new_matrix rows, column_count
  when Matrix
    return self * other.inverse
  else
    return apply_through_coercion(other, __method__)
  end
end

#==(other) ⇒ Object

Returns true if and only if the two matrices contain equal elements.


1020
1021
1022
1023
1024
# File 'lib/matrix.rb', line 1020

def ==(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows == other.rows
end

#[](i, j) ⇒ Object Also known as: element, component

Returns element (i,j) of the matrix. That is: row i, column j.


337
338
339
# File 'lib/matrix.rb', line 337

def [](i, j)
  @rows.fetch(i){return nil}[j]
end

#[]=(i, j, v) ⇒ Object Also known as: set_element, set_component

:call-seq:

matrix[range, range] = matrix/element
matrix[range, integer] = vector/column_matrix/element
matrix[integer, range] = vector/row_matrix/element
matrix[integer, integer] = element

Set element or elements of matrix.

Raises:

  • (FrozenError)

351
352
353
354
355
356
357
358
359
360
361
362
363
364
# File 'lib/matrix.rb', line 351

def []=(i, j, v)
  raise FrozenError, "can't modify frozen Matrix" if frozen?
  rows = check_range(i, :row) or row = check_int(i, :row)
  columns = check_range(j, :column) or column = check_int(j, :column)
  if rows && columns
    set_row_and_col_range(rows, columns, v)
  elsif rows
    set_row_range(rows, column, v)
  elsif columns
    set_col_range(row, columns, v)
  else
    set_value(row, column, v)
  end
end

#absObject

Returns the absolute value elementwise


1275
1276
1277
# File 'lib/matrix.rb', line 1275

def abs
  collect(&:abs)
end

#adjointObject

Returns the adjoint of the matrix.

Matrix[ [i,1],[2,-i] ].adjoint
#  => -i 2
#      1 i

1542
1543
1544
# File 'lib/matrix.rb', line 1542

def adjoint
  conjugate.transpose
end

#adjugateObject

Returns the adjugate of the matrix.

Matrix[ [7,6],[3,9] ].adjugate
#  => 9 -6
#     -3 7

792
793
794
795
796
797
# File 'lib/matrix.rb', line 792

def adjugate
  raise ErrDimensionMismatch unless square?
  Matrix.build(row_count, column_count) do |row, column|
    cofactor(column, row)
  end
end

#antisymmetric?Boolean Also known as: skew_symmetric?

Returns true if this is an antisymmetric matrix. Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


972
973
974
975
976
977
978
# File 'lib/matrix.rb', line 972

def antisymmetric?
  raise ErrDimensionMismatch unless square?
  each_with_index(:upper) do |e, row, col|
    return false unless e == -rows[col][row]
  end
  true
end

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.


1595
1596
1597
1598
1599
1600
1601
1602
# File 'lib/matrix.rb', line 1595

def coerce(other)
  case other
  when Numeric
    return Scalar.new(other), self
  else
    raise TypeError, "#{self.class} can't be coerced into #{other.class}"
  end
end

#cofactor(row, column) ⇒ Object

Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).

Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
#  => -108

Raises:

  • (RuntimeError)

777
778
779
780
781
782
783
# File 'lib/matrix.rb', line 777

def cofactor(row, column)
  raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
  raise ErrDimensionMismatch unless square?

  det_of_minor = first_minor(row, column).determinant
  det_of_minor * (-1) ** (row + column)
end

#collect(which = :all, &block) ⇒ Object Also known as: map

Returns a matrix that is the result of iteration of the given block over all elements of the matrix. Elements can be restricted by passing an argument:

  • :all (default): yields all elements

  • :diagonal: yields only elements on the diagonal

  • :off_diagonal: yields all elements except on the diagonal

  • :lower: yields only elements on or below the diagonal

  • :strict_lower: yields only elements below the diagonal

  • :strict_upper: yields only elements above the diagonal

  • :upper: yields only elements on or above the diagonal Matrix[ [1,2], [3,4] ].collect { |e| e**2 } # => 1 4 # 9 16


508
509
510
511
# File 'lib/matrix.rb', line 508

def collect(which = :all, &block) # :yield: e
  return to_enum(:collect, which) unless block_given?
  dup.collect!(which, &block)
end

#collect!(which = :all) ⇒ Object Also known as: map!

Invokes the given block for each element of matrix, replacing the element with the value returned by the block. Elements can be restricted by passing an argument:

  • :all (default): yields all elements

  • :diagonal: yields only elements on the diagonal

  • :off_diagonal: yields all elements except on the diagonal

  • :lower: yields only elements on or below the diagonal

  • :strict_lower: yields only elements below the diagonal

  • :strict_upper: yields only elements above the diagonal

  • :upper: yields only elements on or above the diagonal

Raises:

  • (FrozenError)

526
527
528
529
530
# File 'lib/matrix.rb', line 526

def collect!(which = :all)
  return to_enum(:collect!, which) unless block_given?
  raise FrozenError, "can't modify frozen Matrix" if frozen?
  each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e }
end

#column(j) ⇒ Object

Returns column vector number j of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.


477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# File 'lib/matrix.rb', line 477

def column(j) # :yield: e
  if block_given?
    return self if j >= column_count || j < -column_count
    row_count.times do |i|
      yield @rows[i][j]
    end
    self
  else
    return nil if j >= column_count || j < -column_count
    col = Array.new(row_count) {|i|
      @rows[i][j]
    }
    Vector.elements(col, false)
  end
end

#column_vectorsObject

Returns an array of the column vectors of the matrix. See Vector.


1616
1617
1618
1619
1620
# File 'lib/matrix.rb', line 1616

def column_vectors
  Array.new(column_count) {|i|
    column(i)
  }
end

#combine(*matrices, &block) ⇒ Object

:call-seq:

combine(*other_matrices) { |*elements| ... }

Creates new matrix by combining with other_matrices entrywise, using the given block.

x = Matrix[[6, 6], [4, 4]]
y = Matrix[[1, 2], [3, 4]]
x.combine(y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]

315
316
317
# File 'lib/matrix.rb', line 315

def combine(*matrices, &block)
  Matrix.combine(self, *matrices, &block)
end

#conjugateObject Also known as: conj

Returns the conjugate of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#  => 1+2i   i  0
#        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
#  => 1-2i  -i  0
#        1   2  3

1530
1531
1532
# File 'lib/matrix.rb', line 1530

def conjugate
  collect(&:conjugate)
end

#determinantObject Also known as: det

Returns the determinant of the matrix.

Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].determinant
#  => 45

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
# File 'lib/matrix.rb', line 1293

def determinant
  raise ErrDimensionMismatch unless square?
  m = @rows
  case row_count
    # Up to 4x4, give result using Laplacian expansion by minors.
    # This will typically be faster, as well as giving good results
    # in case of Floats
  when 0
    +1
  when 1
    + m[0][0]
  when 2
    + m[0][0] * m[1][1] - m[0][1] * m[1][0]
  when 3
    m0, m1, m2 = m
    + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
    - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
    + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
  when 4
    m0, m1, m2, m3 = m
    + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
    - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
    + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
    - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
    + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
    - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
    + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
    - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
    + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
    - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
    + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
    - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
  else
    # For bigger matrices, use an efficient and general algorithm.
    # Currently, we use the Gauss-Bareiss algorithm
    determinant_bareiss
  end
end

#determinant_eObject Also known as: det_e

deprecated; use Matrix#determinant


1374
1375
1376
1377
# File 'lib/matrix.rb', line 1374

def determinant_e
  warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1
  determinant
end

#diagonal?Boolean

Returns true if this is a diagonal matrix. Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


838
839
840
841
# File 'lib/matrix.rb', line 838

def diagonal?
  raise ErrDimensionMismatch unless square?
  each(:off_diagonal).all?(&:zero?)
end

#each(which = :all, &block) ⇒ Object

Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:

  • :all (default): yields all elements

  • :diagonal: yields only elements on the diagonal

  • :off_diagonal: yields all elements except on the diagonal

  • :lower: yields only elements on or below the diagonal

  • :strict_lower: yields only elements below the diagonal

  • :strict_upper: yields only elements above the diagonal

  • :upper: yields only elements on or above the diagonal

    Matrix[ [1,2], [3,4] ].each { |e| puts e }
      # => prints the numbers 1 to 4
    Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
    

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# File 'lib/matrix.rb', line 555

def each(which = :all, &block) # :yield: e
  return to_enum :each, which unless block_given?
  last = column_count - 1
  case which
  when :all
    @rows.each do |row|
      row.each(&block)
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index] unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index]
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index]
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index]
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index]
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end

#each_with_index(which = :all) ⇒ Object

Same as #each, but the row index and column index in addition to the element

Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
  puts "#{e} at #{row}, #{col}"
end
  # => Prints:
  #    1 at 0, 0
  #    2 at 0, 1
  #    3 at 1, 0
  #    4 at 1, 1

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# File 'lib/matrix.rb', line 615

def each_with_index(which = :all) # :yield: e, row, column
  return to_enum :each_with_index, which unless block_given?
  last = column_count - 1
  case which
  when :all
    @rows.each_with_index do |row, row_index|
      row.each_with_index do |e, col_index|
        yield e, row_index, col_index
      end
    end
  when :diagonal
    @rows.each_with_index do |row, row_index|
      yield row.fetch(row_index){return self}, row_index, row_index
    end
  when :off_diagonal
    @rows.each_with_index do |row, row_index|
      column_count.times do |col_index|
        yield row[col_index], row_index, col_index unless row_index == col_index
      end
    end
  when :lower
    @rows.each_with_index do |row, row_index|
      0.upto([row_index, last].min) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_lower
    @rows.each_with_index do |row, row_index|
      [row_index, column_count].min.times do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :strict_upper
    @rows.each_with_index do |row, row_index|
      (row_index+1).upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  when :upper
    @rows.each_with_index do |row, row_index|
      row_index.upto(last) do |col_index|
        yield row[col_index], row_index, col_index
      end
    end
  else
    raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
  end
  self
end

#eigensystemObject Also known as: eigen

Returns the Eigensystem of the matrix; see EigenvalueDecomposition.

m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true

1497
1498
1499
# File 'lib/matrix.rb', line 1497

def eigensystem
  EigenvalueDecomposition.new(self)
end

#elements_to_fObject

Deprecated.

Use map(&:to_f)


1639
1640
1641
1642
# File 'lib/matrix.rb', line 1639

def elements_to_f
  warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1
  map(&:to_f)
end

#elements_to_iObject

Deprecated.

Use map(&:to_i)


1647
1648
1649
1650
# File 'lib/matrix.rb', line 1647

def elements_to_i
  warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1
  map(&:to_i)
end

#elements_to_rObject

Deprecated.

Use map(&:to_r)


1655
1656
1657
1658
# File 'lib/matrix.rb', line 1655

def elements_to_r
  warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1
  map(&:to_r)
end

#empty?Boolean

Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.

Returns:

  • (Boolean)

847
848
849
# File 'lib/matrix.rb', line 847

def empty?
  column_count == 0 || row_count == 0
end

#eql?(other) ⇒ Boolean

Returns:

  • (Boolean)

1026
1027
1028
1029
1030
# File 'lib/matrix.rb', line 1026

def eql?(other)
  return false unless Matrix === other &&
                      column_count == other.column_count # necessary for empty matrices
  rows.eql? other.rows
end

#first_minor(row, column) ⇒ Object

Returns the submatrix obtained by deleting the specified row and column.

Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
#  => 9 0 0
#     0 0 0
#     0 0 4

Raises:

  • (RuntimeError)

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
# File 'lib/matrix.rb', line 750

def first_minor(row, column)
  raise RuntimeError, "first_minor of empty matrix is not defined" if empty?

  unless 0 <= row && row < row_count
    raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
  end

  unless 0 <= column && column < column_count
    raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
  end

  arrays = to_a
  arrays.delete_at(row)
  arrays.each do |array|
    array.delete_at(column)
  end

  new_matrix arrays, column_count - 1
end

#freezeObject


534
535
536
537
# File 'lib/matrix.rb', line 534

def freeze
  @rows.freeze
  super
end

#hadamard_product(m) ⇒ Object Also known as: entrywise_product

Hadamard product

Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
#  => 1  4
#     9  8

1166
1167
1168
# File 'lib/matrix.rb', line 1166

def hadamard_product(m)
  combine(m){|a, b| a * b}
end

#hashObject

Returns a hash-code for the matrix.


1043
1044
1045
# File 'lib/matrix.rb', line 1043

def hash
  @rows.hash
end

#hermitian?Boolean

Returns true if this is an hermitian matrix. Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


855
856
857
858
859
860
# File 'lib/matrix.rb', line 855

def hermitian?
  raise ErrDimensionMismatch unless square?
  each_with_index(:upper).all? do |e, row, col|
    e == rows[col][row].conj
  end
end

#hstack(*matrices) ⇒ Object

Returns a new matrix resulting by stacking horizontally the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]

1388
1389
1390
# File 'lib/matrix.rb', line 1388

def hstack(*matrices)
  self.class.hstack(self, *matrices)
end

#imaginaryObject Also known as: imag

Returns the imaginary part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#  => 1+2i  i  0
#        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
#  =>   2i  i  0
#        0  0  0

1555
1556
1557
# File 'lib/matrix.rb', line 1555

def imaginary
  collect(&:imaginary)
end

#index(*args) ⇒ Object Also known as: find_index

:call-seq:

index(value, selector = :all) -> [row, column]
index(selector = :all){ block } -> [row, column]
index(selector = :all) -> an_enumerator

The index method is specialized to return the index as [row, column] It also accepts an optional selector argument, see #each for details.

Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]

Raises:

  • (ArgumentError)

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# File 'lib/matrix.rb', line 678

def index(*args)
  raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
  which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
  return to_enum :find_index, which, *args unless block_given? || args.size == 1
  if args.size == 1
    value = args.first
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if e == value
    end
  else
    each_with_index(which) do |e, row_index, col_index|
      return row_index, col_index if yield e
    end
  end
  nil
end

#inspectObject

Overrides Object#inspect


1680
1681
1682
1683
1684
1685
1686
# File 'lib/matrix.rb', line 1680

def inspect
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}#{@rows.inspect}"
  end
end

#inverseObject Also known as: inv

Returns the inverse of the matrix.

Matrix[[-1, -1], [0, -1]].inverse
#  => -1  1
#      0 -1

1177
1178
1179
1180
# File 'lib/matrix.rb', line 1177

def inverse
  raise ErrDimensionMismatch unless square?
  self.class.I(row_count).send(:inverse_from, self)
end

#laplace_expansion(row: nil, column: nil) ⇒ Object Also known as: cofactor_expansion

Returns the Laplace expansion along given row or column.

Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
# => 45

Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
# => Vector[3, -2]

809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# File 'lib/matrix.rb', line 809

def laplace_expansion(row: nil, column: nil)
  num = row || column

  if !num || (row && column)
    raise ArgumentError, "exactly one the row or column arguments must be specified"
  end

  raise ErrDimensionMismatch unless square?
  raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?

  unless 0 <= num && num < row_count
    raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
  end

  send(row ? :row : :column, num).map.with_index { |e, k|
    e * cofactor(*(row ? [num, k] : [k,num]))
  }.inject(:+)
end

#lower_triangular?Boolean

Returns true if this is a lower triangular matrix.

Returns:

  • (Boolean)

865
866
867
# File 'lib/matrix.rb', line 865

def lower_triangular?
  each(:strict_upper).all?(&:zero?)
end

#lupObject Also known as: lup_decomposition

Returns the LUP decomposition of the matrix; see LUPDecomposition.

a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation?      # => true
l * u == p * a      # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]

1512
1513
1514
# File 'lib/matrix.rb', line 1512

def lup
  LUPDecomposition.new(self)
end

#minor(*param) ⇒ Object

Returns a section of the matrix. The parameters are either:

  • start_row, nrows, start_col, ncols; OR

  • row_range, col_range

Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
#  => 9 0 0
#     0 5 0

Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.


709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
# File 'lib/matrix.rb', line 709

def minor(*param)
  case param.size
  when 2
    row_range, col_range = param
    from_row = row_range.first
    from_row += row_count if from_row < 0
    to_row = row_range.end
    to_row += row_count if to_row < 0
    to_row += 1 unless row_range.exclude_end?
    size_row = to_row - from_row

    from_col = col_range.first
    from_col += column_count if from_col < 0
    to_col = col_range.end
    to_col += column_count if to_col < 0
    to_col += 1 unless col_range.exclude_end?
    size_col = to_col - from_col
  when 4
    from_row, size_row, from_col, size_col = param
    return nil if size_row < 0 || size_col < 0
    from_row += row_count if from_row < 0
    from_col += column_count if from_col < 0
  else
    raise ArgumentError, param.inspect
  end

  return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
  rows = @rows[from_row, size_row].collect{|row|
    row[from_col, size_col]
  }
  new_matrix rows, [column_count - from_col, size_col].min
end

#normal?Boolean

Returns true if this is a normal matrix. Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


873
874
875
876
877
878
879
880
881
882
883
884
885
# File 'lib/matrix.rb', line 873

def normal?
  raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row_i, i|
    rows.each_with_index do |row_j, j|
      s = 0
      rows.each_with_index do |row_k, k|
        s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
      end
      return false unless s == 0
    end
  end
  true
end

#orthogonal?Boolean

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


891
892
893
894
895
896
897
898
899
900
901
902
903
904
# File 'lib/matrix.rb', line 891

def orthogonal?
  raise ErrDimensionMismatch unless square?

  rows.each_with_index do |row_i, i|
    rows.each_with_index do |row_j, j|
      s = 0
      row_count.times do |k|
        s += row_i[k] * row_j[k]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end

#permutation?Boolean

Returns true if this is a permutation matrix Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# File 'lib/matrix.rb', line 910

def permutation?
  raise ErrDimensionMismatch unless square?
  cols = Array.new(column_count)
  rows.each_with_index do |row, i|
    found = false
    row.each_with_index do |e, j|
      if e == 1
        return false if found || cols[j]
        found = cols[j] = true
      elsif e != 0
        return false
      end
    end
    return false unless found
  end
  true
end

#rankObject

Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].rank
#  => 2

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
# File 'lib/matrix.rb', line 1401

def rank
  # We currently use Bareiss' multistep integer-preserving gaussian elimination
  # (see comments on determinant)
  a = to_a
  last_column = column_count - 1
  last_row = row_count - 1
  pivot_row = 0
  previous_pivot = 1
  0.upto(last_column) do |k|
    switch_row = (pivot_row .. last_row).find {|row|
      a[row][k] != 0
    }
    if switch_row
      a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
      pivot = a[pivot_row][k]
      (pivot_row+1).upto(last_row) do |i|
         ai = a[i]
         (k+1).upto(last_column) do |j|
           ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
         end
       end
      pivot_row += 1
      previous_pivot = pivot
    end
  end
  pivot_row
end

#rank_eObject

deprecated; use Matrix#rank


1432
1433
1434
1435
# File 'lib/matrix.rb', line 1432

def rank_e
  warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1
  rank
end

#realObject

Returns the real part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
#  => 1+2i  i  0
#        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
#  =>    1  0  0
#        1  2  3

1569
1570
1571
# File 'lib/matrix.rb', line 1569

def real
  collect(&:real)
end

#real?Boolean

Returns true if all entries of the matrix are real.

Returns:

  • (Boolean)

931
932
933
# File 'lib/matrix.rb', line 931

def real?
  all?(&:real?)
end

#rectObject Also known as: rectangular

Returns an array containing matrices corresponding to the real and imaginary parts of the matrix

m.rect == [m.real, m.imag]  # ==> true for all matrices m

1579
1580
1581
# File 'lib/matrix.rb', line 1579

def rect
  [real, imag]
end

#regular?Boolean

Returns true if this is a regular (i.e. non-singular) matrix.

Returns:

  • (Boolean)

938
939
940
# File 'lib/matrix.rb', line 938

def regular?
  not singular?
end

#round(ndigits = 0) ⇒ Object

Returns a matrix with entries rounded to the given precision (see Float#round)


1440
1441
1442
# File 'lib/matrix.rb', line 1440

def round(ndigits=0)
  map{|e| e.round(ndigits)}
end

#row(i, &block) ⇒ Object

Returns row vector number i of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.


463
464
465
466
467
468
469
470
# File 'lib/matrix.rb', line 463

def row(i, &block) # :yield: e
  if block_given?
    @rows.fetch(i){return self}.each(&block)
    self
  else
    Vector.elements(@rows.fetch(i){return nil})
  end
end

#row_countObject Also known as: row_size

Returns the number of rows.


448
449
450
# File 'lib/matrix.rb', line 448

def row_count
  @rows.size
end

#row_vectorsObject

Returns an array of the row vectors of the matrix. See Vector.


1607
1608
1609
1610
1611
# File 'lib/matrix.rb', line 1607

def row_vectors
  Array.new(row_count) {|i|
    row(i)
  }
end

#singular?Boolean

Returns true if this is a singular matrix.

Returns:

  • (Boolean)

945
946
947
# File 'lib/matrix.rb', line 945

def singular?
  determinant == 0
end

#square?Boolean

Returns true if this is a square matrix.

Returns:

  • (Boolean)

952
953
954
# File 'lib/matrix.rb', line 952

def square?
  column_count == row_count
end

#symmetric?Boolean

Returns true if this is a symmetric matrix. Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


960
961
962
963
964
965
966
# File 'lib/matrix.rb', line 960

def symmetric?
  raise ErrDimensionMismatch unless square?
  each_with_index(:strict_upper) do |e, row, col|
    return false if e != rows[col][row]
  end
  true
end

#to_aObject

Returns an array of arrays that describe the rows of the matrix.


1632
1633
1634
# File 'lib/matrix.rb', line 1632

def to_a
  @rows.collect(&:dup)
end

#to_matrixObject

Explicit conversion to a Matrix. Returns self


1625
1626
1627
# File 'lib/matrix.rb', line 1625

def to_matrix
  self
end

#to_sObject

Overrides Object#to_s


1667
1668
1669
1670
1671
1672
1673
1674
1675
# File 'lib/matrix.rb', line 1667

def to_s
  if empty?
    "#{self.class}.empty(#{row_count}, #{column_count})"
  else
    "#{self.class}[" + @rows.collect{|row|
      "[" + row.collect{|e| e.to_s}.join(", ") + "]"
    }.join(", ")+"]"
  end
end

#traceObject Also known as: tr

Returns the trace (sum of diagonal elements) of the matrix.

Matrix[[7,6], [3,9]].trace
#  => 16

1449
1450
1451
1452
1453
1454
# File 'lib/matrix.rb', line 1449

def trace
  raise ErrDimensionMismatch unless square?
  (0...column_count).inject(0) do |tr, i|
    tr + @rows[i][i]
  end
end

#transposeObject Also known as: t

Returns the transpose of the matrix.

Matrix[[1,2], [3,4], [5,6]]
#  => 1 2
#     3 4
#     5 6
Matrix[[1,2], [3,4], [5,6]].transpose
#  => 1 3 5
#     2 4 6

1467
1468
1469
1470
# File 'lib/matrix.rb', line 1467

def transpose
  return self.class.empty(column_count, 0) if row_count.zero?
  new_matrix @rows.transpose, row_count
end

#unitary?Boolean

Returns true if this is a unitary matrix Raises an error if matrix is not square.

Returns:

  • (Boolean)

Raises:


985
986
987
988
989
990
991
992
993
994
995
996
997
# File 'lib/matrix.rb', line 985

def unitary?
  raise ErrDimensionMismatch unless square?
  rows.each_with_index do |row_i, i|
    rows.each_with_index do |row_j, j|
      s = 0
      row_count.times do |k|
        s += row_i[k].conj * row_j[k]
      end
      return false unless s == (i == j ? 1 : 0)
    end
  end
  true
end

#upper_triangular?Boolean

Returns true if this is an upper triangular matrix.

Returns:

  • (Boolean)

1002
1003
1004
# File 'lib/matrix.rb', line 1002

def upper_triangular?
  each(:strict_lower).all?(&:zero?)
end

#vstack(*matrices) ⇒ Object

Returns a new matrix resulting by stacking vertically the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]

1481
1482
1483
# File 'lib/matrix.rb', line 1481

def vstack(*matrices)
  self.class.vstack(self, *matrices)
end

#zero?Boolean

Returns true if this is a matrix with only zero elements

Returns:

  • (Boolean)

1009
1010
1011
# File 'lib/matrix.rb', line 1009

def zero?
  all?(&:zero?)
end