Class: MachineLearningWorkbench::NeuralNetwork::Base

Inherits:
Object
  • Object
show all
Defined in:
lib/machine_learning_workbench/neural_network/base.rb

Overview

Neural Network base class

Direct Known Subclasses

FeedForward, Recurrent

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(struct, act_fn: nil) ⇒ Base

Returns a new instance of Base.

Parameters:

  • struct (Array<Integer>)

    list of layer sizes

  • act_fn (Symbol) (defaults to: nil)

    choice of activation function for the neurons



29
30
31
32
33
34
35
36
37
38
39
40
41
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 29

def initialize struct, act_fn: nil
  @struct = struct
  @act_fn_name = act_fn || :sigmoid
  @act_fn = send(act_fn_name)
  # @state holds both inputs, possibly recurrency, and bias
  # it is a complete input for the next layer, hence size from layer sizes
  @state = layer_row_sizes.collect do |size|
    NArray.zeros [1, size]
  end
  # to this, append a matrix to hold the final network output
  @state.push NArray.zeros [1, nneurs(-1)]
  reset_state
end

Instance Attribute Details

#act_fn#call (readonly)

activation function, common to all neurons (for now)

Returns:

  • (#call)

    activation function



22
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 22

attr_reader :layers, :state, :act_fn, :act_fn_name, :struct

#act_fn_nameObject (readonly)

Returns the value of attribute act_fn_name.



22
23
24
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 22

def act_fn_name
  @act_fn_name
end

#layersArray<NArray> (readonly)

List of matrices, each being the weights connecting a layer’s inputs (rows) to a layer’s neurons (columns), hence its shape is ‘[ninputs, nneurs]` TODO: return a NArray after the usage of `#map` is figured out

Returns:

  • (Array<NArray>)

    list of weight matrices, each uniquely describing a layer



22
23
24
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 22

def layers
  @layers
end

#stateArray<NArray> (readonly)

It’s a list of one-dimensional matrices, each an input to a layer, plus the output layer’s output. The first element is the input to the first layer of the network, which is composed of the network’s input, possibly the first layer’s activation on the last input (recursion), and a bias (fixed ‘1`). The second to but-last entries follow the same structure, but with the previous layer’s output in place of the network’s input. The last entry is the activation of the output layer, without additions since it’s not used as an input by anyone. TODO: return a NArray after the usage of ‘#map` is figured out

Returns:

  • (Array<NArray>)

    current state of the network.



22
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 22

attr_reader :layers, :state, :act_fn, :act_fn_name, :struct

#structObject (readonly)

Returns the value of attribute struct.



22
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 22

attr_reader :layers, :state, :act_fn, :act_fn_name, :struct

Instance Method Details

#activate(input) ⇒ Array

Activate the network on a given input

Parameters:

  • input (Array<Float>)

    the given input

Returns:

  • (Array)

    the activation of the output layer

Raises:

  • (ArgumentError)


145
146
147
148
149
150
151
152
153
154
155
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 145

def activate input
  raise ArgumentError unless input.size == struct.first
  # load input in first state
  state[0][0...struct.first] = input
  # activate layers in sequence
  nlayers.times.each do |i|
    act = activate_layer i
    state[i+1][0...act.size] = act
  end
  return out
end

#deep_resetObject

Resets memoization: needed to play with structure modification



61
62
63
64
65
66
67
68
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 61

def deep_reset
  # reset memoization
  [:@layer_row_sizes, :@layer_col_sizes, :@nlayers, :@layer_shapes,
   :@nweights_per_layer, :@nweights].each do |sym|
     instance_variable_set sym, nil
  end
  reset_state
end

#init_randomObject

Initialize the network with random weights



53
54
55
56
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 53

def init_random
  # Reusing `#load_weights` instead helps catching bugs
  load_weights NArray.new(nweights).rand(-1,1)
end

#interface_methodsObject

Declaring interface methods - implement in child class!



187
188
189
190
191
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 187

[:layer_row_sizes, :activate_layer].each do |sym|
  define_method sym do
    raise NotImplementedError, "Implement ##{sym} in child class!"
  end
end

#layer_col_sizesArray

Number of neurons per layer. Although this implementation includes inputs in the layer counts, this methods correctly ignores the input as not having neurons.

Returns:

  • (Array)

    list of neurons per each (proper) layer (i.e. no inputs)



99
100
101
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 99

def layer_col_sizes
  @layer_col_sizes ||= struct.drop(1)
end

#layer_shapesArray<Array[Integer, Integer]>

Shapes for the weight matrices, each corresponding to a layer

Returns:

  • (Array<Array[Integer, Integer]>)

    Weight matrix shapes



107
108
109
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 107

def layer_shapes
  @layer_shapes ||= layer_row_sizes.zip layer_col_sizes
end

#lecun_hyperbolicObject

LeCun hyperbolic activation

See Also:



175
176
177
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 175

def lecun_hyperbolic
  -> (vec) { 1.7159 * NMath.tanh(2.0*vec/3.0) + 1e-3*vec }
end

#load_weights(weights) ⇒ true

Loads a plain list of weights into the weight matrices (one per layer). Preserves order. Reuses allocated memory if available.

Returns:

  • (true)

    always true. If something’s wrong it simply fails, and if all goes well there’s nothing to return but a confirmation to the caller.

Raises:

  • (ArgumentError)


125
126
127
128
129
130
131
132
133
134
135
136
137
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 125

def load_weights weights
  raise ArgumentError unless weights.size == nweights
  weights = weights.to_na unless weights.kind_of? NArray
  from = 0
  @layers = layer_shapes.collect do |shape|
    to = from + shape.reduce(:*)
    lay_w = weights[from...to].reshape *shape
    from = to
    lay_w
  end
  reset_state
  return true
end

#nlayersInteger

Count the layers. This is a computation helper, and for this implementation the inputs are considered as if a layer like the others.

Returns:

  • (Integer)

    number of layers



85
86
87
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 85

def nlayers
  @nlayers ||= layer_shapes.size
end

#nneurs(nlay = nil) ⇒ Integer

Count the neurons in a particular layer or in the whole network.

Parameters:

  • nlay (Integer, nil) (defaults to: nil)

    the layer of interest, 1-indexed. ‘0` will return the number of inputs. `nil` will compute the total neurons in the network.

Returns:

  • (Integer)

    the number of neurons in a given layer, or in all network, or the number of inputs



116
117
118
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 116

def nneurs nlay=nil
  nlay.nil? ? struct.reduce(:+) : struct[nlay]
end

#nweightsInteger

Total weights in the network

Returns:

  • (Integer)

    total number of weights



72
73
74
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 72

def nweights
  @nweights ||= nweights_per_layer.reduce(:+)
end

#nweights_per_layerArray<Integer>

List of per-layer number of weights

Returns:

  • (Array<Integer>)

    list of weights per each layer



78
79
80
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 78

def nweights_per_layer
  @nweights_per_layer ||= layer_shapes.collect { |shape| shape.reduce(:*) }
end

#outNArray

Extract and convert the output layer’s activation

Returns:

  • (NArray)

    the activation of the output layer



159
160
161
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 159

def out
  state.last.flatten
end

#reluObject

Rectified Linear Unit (ReLU)



180
181
182
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 180

def relu
  -> (vec) { (vec>0).all? && vec || vec.class.zeros(vec.shape) }
end

#reset_stateObject

Reset the network to the initial state



44
45
46
47
48
49
50
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 44

def reset_state
  state.each do |s|
    s.fill 0           # reset state to zero
    s[-1] = 1        # add bias
  end
  state[-1][-1] = 0  # last layer has no bias
end

#sigmoid(k = 0.5) ⇒ Object Also known as: logistic

Traditional sigmoid (logistic) with variable steepness



166
167
168
169
170
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 166

def sigmoid k=0.5
  # k is steepness:  0<k<1 is flatter, 1<k is flatter
  # flatter makes activation less sensitive, better with large number of inputs
  -> (vec) { 1.0 / (NMath.exp(-k * vec) + 1.0) }
end

#weightsArray<NArray>

Returns the weight matrix

Returns:

  • (Array<NArray>)

    list of NArray matrices of weights (one per layer).



91
92
93
# File 'lib/machine_learning_workbench/neural_network/base.rb', line 91

def weights
  layers
end