Class: MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::RNES
- Inherits:
-
Base
- Object
- Base
- MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::RNES
- Defined in:
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb
Overview
Radial Natural Evolution Strategies
Direct Known Subclasses
Instance Attribute Summary collapse
-
#variance ⇒ Object
readonly
Returns the value of attribute variance.
Attributes inherited from Base
#best, #dtype, #id, #last_fits, #mu, #ndims, #obj_fn, #opt_type, #parallel_fit, #rescale_lrate, #rescale_popsize, #rng, #sigma
Instance Method Summary collapse
-
#convergence ⇒ Object
Estimate algorithm convergence based on variance.
- #initialize_distribution(mu_init: 0, sigma_init: 1) ⇒ Object
- #load(data) ⇒ Object
- #save ⇒ Object
- #train(picks: sorted_inds) ⇒ Object
Methods inherited from Base
#cmaes_lrate, #cmaes_popsize, #cmaes_utilities, #initialize, #interface_methods, #lrate, #move_inds, #popsize, #sorted_inds, #standard_normal_sample, #standard_normal_samples, #utils
Constructor Details
This class inherits a constructor from MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::Base
Instance Attribute Details
#variance ⇒ Object (readonly)
Returns the value of attribute variance.
5 6 7 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 5 def variance @variance end |
Instance Method Details
#convergence ⇒ Object
Estimate algorithm convergence based on variance
23 24 25 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 23 def convergence variance end |
#initialize_distribution(mu_init: 0, sigma_init: 1) ⇒ Object
7 8 9 10 11 12 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 7 def initialize_distribution mu_init: 0, sigma_init: 1 @mu = NMatrix.new([1, ndims], mu_init, dtype: dtype) raise ArgumentError unless sigma_init.kind_of? Numeric @variance = sigma_init @sigma = id * variance end |
#load(data) ⇒ Object
31 32 33 34 35 36 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 31 def load data raise ArgumentError unless data.size == 2 mu_ary, @variance = data @mu = NMatrix[*mu_ary, dtype: dtype] @sigma = id * variance end |
#save ⇒ Object
27 28 29 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 27 def save [mu.to_consistent_a, variance] end |
#train(picks: sorted_inds) ⇒ Object
14 15 16 17 18 19 20 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/rnes.rb', line 14 def train picks: sorted_inds g_mu = utils.dot(picks) g_sigma = utils.dot(picks.row_norms**2 - ndims).first # back to scalar @mu += sigma.dot(g_mu.transpose).transpose * lrate @variance *= Math.exp(g_sigma * lrate / 2) @sigma = id * variance end |