Class: MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::XNES
- Inherits:
-
Base
- Object
- Base
- MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::XNES
- Defined in:
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb
Overview
Exponential Natural Evolution Strategies
Instance Attribute Summary collapse
-
#log_sigma ⇒ Object
readonly
Returns the value of attribute log_sigma.
Attributes inherited from Base
#best, #id, #last_fits, #mu, #ndims, #obj_fn, #opt_type, #rng, #sigma
Instance Method Summary collapse
-
#convergence ⇒ Object
Estimate algorithm convergence as total variance.
- #initialize_distribution(mu_init: 0, sigma_init: 1) ⇒ Object
- #load(data) ⇒ Object
- #save ⇒ Object
- #train(picks: sorted_inds) ⇒ Object
Methods inherited from Base
#cmaes_lrate, #cmaes_popsize, #cmaes_utilities, #initialize, #interface_methods, #lrate, #move_inds, #popsize, #sorted_inds, #standard_normal_sample, #standard_normal_samples, #utils
Constructor Details
This class inherits a constructor from MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies::Base
Instance Attribute Details
#log_sigma ⇒ Object (readonly)
Returns the value of attribute log_sigma.
5 6 7 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 5 def log_sigma @log_sigma end |
Instance Method Details
#convergence ⇒ Object
Estimate algorithm convergence as total variance
30 31 32 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 30 def convergence sigma.trace end |
#initialize_distribution(mu_init: 0, sigma_init: 1) ⇒ Object
7 8 9 10 11 12 13 14 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 7 def initialize_distribution mu_init: 0, sigma_init: 1 @mu = NMatrix.new([1, ndims], mu_init, dtype: :float64) sigma_init = [sigma_init]*ndims unless sigma_init.kind_of? Enumerable @sigma = NMatrix.diag(sigma_init, dtype: :float64) # Works with the log of sigma to avoid continuous decompositions (thanks Sun Yi) log_sigma_init = sigma_init.map &Math.method(:log) @log_sigma = NMatrix.diag(log_sigma_init, dtype: :float64) end |
#load(data) ⇒ Object
38 39 40 41 42 43 44 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 38 def load data raise ArgumentError unless data.size == 2 mu_ary, log_sigma_ary = data @mu = NMatrix[*mu_ary, dtype: :float64] @log_sigma = NMatrix[*log_sigma_ary, dtype: :float64] @sigma = log_sigma.exponential end |
#save ⇒ Object
34 35 36 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 34 def save [mu.to_consistent_a, log_sigma.to_consistent_a] end |
#train(picks: sorted_inds) ⇒ Object
16 17 18 19 20 21 22 23 24 25 26 27 |
# File 'lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb', line 16 def train picks: sorted_inds g_mu = utils.dot(picks) g_log_sigma = popsize.times.inject(NMatrix.zeros_like sigma) do |sum, i| u = utils[i] ind = picks.row(i) ind_sq = ind.outer_flat(ind, &:*) sum + (ind_sq - id) * u end @mu += sigma.dot(g_mu.transpose).transpose * lrate @log_sigma += g_log_sigma * (lrate/2) @sigma = log_sigma.exponential end |