Module: LogicTools
- Defined in:
- lib/logic_tools.rb,
lib/logic_tools/traces.rb,
lib/logic_tools/version.rb,
lib/logic_tools/logictree.rb,
lib/logic_tools/logiccover.rb,
lib/logic_tools/logicinput.rb,
lib/logic_tools/logicparse.rb,
lib/logic_tools/logicconvert.rb,
lib/logic_tools/logicfunction.rb,
lib/logic_tools/logicgenerator.rb,
lib/logic_tools/logicsimplify_es.rb,
lib/logic_tools/logicsimplify_qm.rb,
lib/logic_tools/minimal_column_covers.rb
Overview
TODO: bdd representation.
Defined Under Namespace
Modules: Traces Classes: Cover, Cube, Function, Generator, HashCounter, Implicant, Indenter, Node, NodeAnd, NodeFalse, NodeNary, NodeNot, NodeOr, NodeTrue, NodeUnary, NodeValue, NodeVar, Parser, SameXImplicants, SmallestSumTerm, Transform, Variable, VoidCube
Constant Summary collapse
- VERSION =
"0.3.9"
Instance Method Summary collapse
-
#cofactor_cube_indexed(cover, cube) ⇒ Object
Generates the generalized cofactor of
coverfromcubewhile keeping the cubes indexes in the cover. -
#cofactor_indexed(cover, var, val) ⇒ Object
Generates the cofactor of
coverobtained whenvaris set tovalwhile keeping the cubes indexes in the cover. -
#cost(cover) ⇒ Object
Computes the cost of a
cover. -
#each_input ⇒ Object
Gets an iterator over the input expression (obtained either through options or a through file).
-
#essentials(on, dc) ⇒ Object
Get the essential cubes from the
oncover which are not covered by thedc(don’t care) cover. -
#expand(on, off, deadline) ⇒ Object
Expands cover
onas long it does not intersects withoff. -
#help_short ⇒ Object
Displays a short help message.
-
#irredundant(on, dc, deadline) ⇒ Object
Removes the cubes of the
oncover that are redundant for the jointonanddccovers. -
#irredundant_partial(on) ⇒ Object
Remove quickly some cubes of the
oncover that are redundant. -
#max_reduce(cube, on, dc) ⇒ Object
Compute the maximum reduction of a cube from an
oncover which does not intersect with anotherdccover. -
#minimal_column_covers(matrix, smallest = false, deadline = Float::INFINITY) ⇒ Object
Computes the minimal column covers of a boolean
matrix. -
#minimal_set_covers(cover, dc) ⇒ Object
Computes the minimal set cover of a
coveralong with adc(don’t care) cover. -
#order(cover) ⇒ Object
Sorts the cubes of a
coverby weight. -
#reduce(on, dc) ⇒ Object
Reduces cover
onesuringdc(don’t care) is not intersected. -
#smallest_sum_term(product, deadline = Float::INFINITY) ⇒ Object
Extracts from a
productof sums the smallest term of the corresponding sum of products. -
#string2logic(str) ⇒ Object
The parser/gerator main fuction: converts the text in
strto a logic tree. -
#to_sum_product_array(product) ⇒ Object
Converts a
productof sum to a sum of product. -
#vars2int(vars) ⇒ Object
Converts the array of variables
varto a bit vector according to their values.
Instance Method Details
#cofactor_cube_indexed(cover, cube) ⇒ Object
Generates the generalized cofactor of cover from cube
while keeping the cubes indexes in the cover.
NOTE: for irreduntant only since the resulting cover is not in a
valid state!
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 274 def cofactor_cube_indexed(cover,cube) # Create the new cover. ncover = Cover.new(*@variables) # Set its cubes. cover.each_cube do |scube| scube = scube.to_s scube.size.times do |i| # if scube.getbyte(i) == cube[i] then if scube.getbyte(i) == cube.getbyte(i) then # scube[i] = "-" scube.setbyte(i,45) # elsif (scube[i] != "-" and cube[i] != "-") then elsif (scube.getbyte(i) != 45 and cube.getbyte(i) != 45) then # The cube is to remove from the cover. scube = nil break end end if scube then # The cube is to keep in the cofactor. ncover << Cube.new(scube,false) # No need to clone scube. else # Add an empty cube for keeping the index. ncover << VoidCube.new(ncover.width) end end return ncover end |
#cofactor_indexed(cover, var, val) ⇒ Object
Generates the cofactor of cover obtained when var is set to val
while keeping the cubes indexes in the cover.
NOTE: for irreduntant only since the resulting cover is not in a
valid state!
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 244 def cofactor_indexed(cover,var,val) # if val != "0" and val != "1" then if val != 48 and val != 49 then raise "Invalid value for generating a cofactor: #{val}" end # Get the index of the variable. i = cover.variable_index(var) # Create the new cover. ncover = Cover.new(*@variables) # Set its cubes. cover.each_cube do |cube| cube = cube.to_s # cube[i] = "-" if cube[i] == val cube.setbyte(i,45) if cube.getbyte(i) == val # if cube[i] == "-" then if cube.getbyte(i) == 45 then ncover << Cube.new(cube,false) # No need to clone cube. else # Add an empty cube for keeping the index. ncover << VoidCube.new(ncover.width) end end return ncover end |
#cost(cover) ⇒ Object
Computes the cost of a cover.
The cost of the cover is sum of the number of variable of each cube.
489 490 491 492 493 494 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 489 def cost(cover) return cover.each_cube.reduce(0) do |sum, cube| # sum + cube.each_bit.count { |b| b != "-" } sum + cube.each_byte.count { |b| b != 45 } end end |
#each_input ⇒ Object
Gets an iterator over the input expression
(obtained either through options or a through file).
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/logic_tools/logicinput.rb', line 19 def each_input # No block? Return an enumerator return enum_for(:each_input) unless block_given? # A block? Interrate with it # Process the arguments if ($*.empty?) then # No arguments, shows the help and end. help_short exit(1) end if $*[0] == "-f" or $*[0] == "--file" then # Work from a file, iterate on each line exprs = File.read($*[1]) exprs.gsub!(/\r\n?/, "\n") exprs.each_line do |line| yield(line) end elsif $*[0] == "-h" or $*[0] == "--help" then help_short else # Work directly on the arguments as an expression yield($*.join) end end |
#essentials(on, dc) ⇒ Object
Get the essential cubes from the on cover which are not covered
by the +dc+ (don't care) cover.
Returns the new cover.
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 439 def essentials(on,dc) # Create the essential list. es = [] # For each cube of on, check if it is essential. on.each_cube do |cube| # Step 1: build the +cover+ (on-cube)+dc. # NOTE: could be done without allocating multiple covers, # but this is much readable this way, so kept as is as long # as there do not seem to be any much performance penalty. cover = (on-cube)+dc # Step 2: Gather the concensus beteen each cube of +cover+ # and their sharp with +cube+. cons = Cover.new(*on.each_variable) cover.each_cube do |ccube| # Depending on the distance. dist = cube.distance(ccube) # If the distance is >1 there is no consensus. # Otherwise: if (dist == 1) then # The distance is 1, the consensus is computed directly. cons << ccube.consensus(cube) elsif (dist == 0) # The distance is 0, sharp ccube from cube and # compute the concensus from each resulting prime cube. ccube.sharp(cube).each do |scube| scube = scube.consensus(cube) cons << scube if scube end end end # Step 3: check if +cube+ is covered by cover+cons. # This is done by checking is the cofactor with cube # is not a tautology. unless (cons+dc).cofactor_cube(cube).is_tautology? # +cube+ is not covered by cover+cons, it is an essential. es << cube end end # Create the resulting cover. result = Cover.new(*on.each_variable) es.each { |es| result << es } return result end |
#expand(on, off, deadline) ⇒ Object
Expands cover on as long it does not intersects with off.
NOTE: this step requires to find the minimal column set cover of
a matrix, this algorthim can be very slow and is therefore terminate
before an optimal solution is found is a +deadline+ is exceeded.
Returns the resulting cover.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 101 def (on,off,deadline) # Step 1: sort the cubes by weight. on = order(on) # print "#3.1 #{Time.now}\n" # print "on=[#{on.to_s}]\n" # Create the resulting cover. cover = Cover.new(*on.each_variable) # Step 2: Expand the cubes in order of their weights. on.each_cube do |cube| # print "#3.2 #{Time.now} cube=#{cube}\n" # Builds the blocking matrix blocking = cube.blocking_matrix(off) # print "blocking=[#{blocking}]\n" # Select the smallest minimal column cover of the blocking # matrix: it will be the expansion col_cover = minimal_column_covers(blocking[1..-1],true,deadline) # print "col_cover=#{col_cover}\n" # This is the new cube bits = "-" * cube.width col_cover.each do |col| # The first row of the blocking matrix give the actual # column of the litteral col = blocking[0][col] # bits[col] = cube[col] bits.setbyte(col,cube.getbyte(col)) end # print "expand result=#{bits}\n" # Create and add the new expanded cube. cover << Cube.new(bits,false) # No need to clone bits. end return cover end |
#help_short ⇒ Object
Displays a short help message.
11 12 13 14 15 |
# File 'lib/logic_tools/logicinput.rb', line 11 def help_short name = File.basename($0) puts "Usage: #{name} <\"logic expression\">" puts " or: #{name} -f <file name>" end |
#irredundant(on, dc, deadline) ⇒ Object
Removes the cubes of the on cover that are redundant for the joint on
and +dc+ covers.
NOTE: this step requires to find the minimal column set cover of
a matrix, this algorthim can be very slow and is therefore terminate
before an optimal solution is found is a +deadline+ is exceeded.
Returns the new cover.
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 357 def irredundant(on,dc,deadline) # Step 1: get the relatively essential. # print "on=#{on}\n" cubes, es_rel = on.each_cube.partition do |cube| ((on+dc) - cube).cofactor_cube(cube).is_tautology? end return on.clone if cubes.empty? # There were only relatively essentials. # print "cubes = #{cubes}\n" # print "es_rel = #{es_rel}\n" # Step 2: get the partially and totally redundants. es_rel_dc = Cover.new(*on.each_variable) es_rel.each { |cube| es_rel_dc << cube } dc.each { |cube| es_rel_dc << cube } red_tot, red_par = cubes.partition do |cube| es_rel_dc.cofactor_cube(cube).is_tautology? end # red_par is to be used as a cover. red_par_cover = Cover.new(*on.each_variable) red_par.each { |cube| red_par_cover << cube } # print "es_rel_dc = #{es_rel_dc}\n" # print "red_tot = #{red_tot}\n" # print "red_par = #{red_par}\n" # Step 3: get the minimal sets of partially redundant. red_par_sets = red_par.map do |cube| # print "for cube=#{cube}\n" minimal_set_covers( cofactor_cube_indexed(red_par_cover,cube), cofactor_cube_indexed(es_rel_dc,cube) ) end # red_par_sets.each { |set| set.map! {|i| red_par[i] } } # print "red_par_sets=#{red_par_sets}\n" # Step 4: find the smallest minimal set using the minimal column covers # algorithm. # For that purpose build the boolean matrix whose columns are for the # partially redundant cubes and the rows are for the sets, "1" # indication the cube is the in set. matrix = [] red_par_sets.each do |sets| sets.each do |set| row = "0" * red_par.size # set.each { |i| row[i] = "1" } set.each { |i| row.setbyte(i,49) } matrix << row end end # print "matrix=#{matrix}\n" smallest_set_cols = minimal_column_covers(matrix,true,deadline) # print "smallest_set_cols=#{smallest_set_cols}\n" # Creates a new cover with the relative essential cubes and the # smallest set of partially redundant cubes. cover = Cover.new(*on.each_variable) es_rel.each { |cube| cover << cube.clone } # smallest_set_cols.each do |set| # set.each { |col| cover << red_par[col].clone } # end smallest_set_cols.each { |col| cover << red_par[col].clone } # print "cover=#{cover}\n" return cover end |
#irredundant_partial(on) ⇒ Object
Remove quickly some cubes of the on cover that are redundant.
Returns the new cover.
423 424 425 426 427 428 429 430 431 432 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 423 def irredundant_partial(on) result = Cover.new(*on.each_variable) on.each.with_index do |cube,i| # Is cube included somewhere? unless on.each.with_index.find {|cube1,j| j != i and cube1.include?(cube) } # No, keep the cube. result << cube end end end |
#max_reduce(cube, on, dc) ⇒ Object
Compute the maximum reduction of a cube from an on cover
which does not intersect with another +dc+ cover.
498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 498 def max_reduce(cube,on,dc) # print "max_reduce with cube=#{cube} on=#{on} dc=#{dc}\n" # Step 1: create the cover to get the reduction from. cover = ((on + dc) - cube).cofactor_cube(cube) # print "cover=#{cover}, taut=#{cover.is_tautology?}\n" # Step 2: complement it compl = cover.complement # print "compl=#{compl}\n" # Step 3: get the smallest cube containing the complemented cover sccc = compl.smallest_containing_cube # print "sccc=#{sccc}\n" # The result is the intersection of this cube with +cube+. return cube.intersect(sccc) end |
#minimal_column_covers(matrix, smallest = false, deadline = Float::INFINITY) ⇒ Object
Computes the minimal column covers of a boolean matrix.
If +smallest+ is set to one, the method returns the smallest minimal
column cover instead.
The +matrix+ is assumed to be an array of string, each string
representing a boolean row ("0" for false and "1" for true).
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# File 'lib/logic_tools/minimal_column_covers.rb', line 195 def minimal_column_covers(matrix, smallest = false, deadline = Float::INFINITY) # print "matrix=#{matrix}\n" # Step 1: reduce the matrix for faster processing. # First put appart the essential columns. essentials = [] matrix.each do |row| col = nil row.each_byte.with_index do |c,i| # if c == "1" then if c == 49 then if col then # The row has several "1", no essential column there. col = nil break end col = i end end # An essential column is found. essentials << col if col end essentials.uniq! # print "essentials = #{essentials}\n" # The remove the rows covered by essential columns. keep = [ true ] * matrix.size essentials.each do |col| matrix.each.with_index do |row,i| # keep[i] = false if row[col] == "1" keep[i] = false if row.getbyte(col) == 49 end end # print "keep = #{keep}\n" reduced = matrix.select.with_index {|row,i| keep[i] } # print "matrix = #{matrix}\n" # print "reduced = #{reduced}\n" if reduced.empty? then # Essentials columns are enough for the cover, end here. if smallest then return essentials else return [ essentials ] end end to_optimize = false removed_columns = [] begin to_optimize = false # Then remove the dominating rows reduced.uniq! reduced = reduced.select.with_index do |row0,i| ! reduced.find.with_index do |row1,j| if i == j then false else # The row is dominating if in includes another row. res = row0.each_byte.with_index.find do |c,j| # row1[j] == "1" and c == "0" row1.getbyte(j) == 49 and c == 48 end # Not dominating if res !res end end end # # Finally remove the dominated columns if only one column cover # # is required. # if smallest and reduced.size >= 1 then # size = reduced[0].size # size.times.reverse_each do |col0| # next if removed_columns.include?(col0) # size.times do |col1| # next if col0 == col1 # # The column is dominated if it is included into another. # res = reduced.find do |row| # row[col0] == "1" and row[col1] == "0" # end # # Not dominated if res # unless res # to_optimize = true # # print "removing column=#{col0}\n" # # Dominated, remove it # reduced.each { |row| row[col0] = "0" } # removed_columns << col0 # end # end # end # end end while(to_optimize) # print "now reduced=#{reduced}\n" # Step 2: Generate the Petrick's product. product = [] reduced.each do |row| term = [] # Get the columns covering the row. row.each_byte.with_index do |bit,i| # term << i if bit == "1" term << i if bit == 49 end product << term unless term.empty? end if smallest then if product.empty? then return essentials end cover = smallest_sum_term(product,deadline) if essentials then # print "essentials =#{essentials} cover=#{cover}\n" essentials.each {|cube| cover.unshift(cube) } return cover else return cover end end # print "product=#{product}\n" if product.empty? then sum = product else product.each {|fact| fact.sort!.uniq! } product.sort!.uniq! # print "product=#{product}\n" sum = to_sum_product_array(product) # print "sum=#{sum}\n" sum.each {|term| term.uniq! } sum.uniq! sum.sort_by! {|term| term.size } # print "sum=#{sum}\n" end # # Add the essentials to the result and return it. # if smallest then # # print "smallest_cover=#{smallest_cover}, essentials=#{essentials}\n" # return essentials if sum.empty? # # Look for the smallest cover # sum.sort_by! { |cover| cover.size } # if essentials then # return sum[0] + essentials # else # return sum[0] # end # else sum.map! { |cover| essentials + cover } return sum # end end |
#minimal_set_covers(cover, dc) ⇒ Object
Computes the minimal set cover of a cover along with a dc
(don't care) cover.
Return the set as a list of cube indexes in the cover.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 307 def minimal_set_covers(cover,dc) # print "minimal_set_cover with cover=#{cover} and dc=#{dc}\n" # Look for a binate variable to split on. binate = (cover+dc).find_binate # binate = cover.find_binate # # Gets its index # i = cover.variable_index(binate) unless binate then # The cover is actually unate, process it the fast way. # Look for "-" only cubes. # First in +dc+: if there is an "-" only cube, there cannot # be any minimal set cover. dc.each_cube do |cube| # return [] unless cube.each.find { |b| b != "-" } return [] unless cube.each_byte.find { |b| b != 45 } end # Then in +cover+: each "-" only cube correspond to a cube in the # minimal set cover. result = [] cover.each.with_index do |cube,i| # print "cube=#{cube} i=#{i}\n" # result << i unless cube.each.find { |b| b != "-" } result << i unless cube.each_byte.find { |b| b != 45 } end # print "result=#{result}\n" return [ result ] else # Compute the cofactors over the binate variables. # cf0 = cofactor_indexed(cover,binate,"0") cf0 = cofactor_indexed(cover,binate,48) # cf1 = cofactor_indexed(cover,binate,"1") cf1 = cofactor_indexed(cover,binate,49) # df0 = cofactor_indexed(dc,binate,"0") df0 = cofactor_indexed(dc,binate,48) # df1 = cofactor_indexed(dc,binate,"1") df1 = cofactor_indexed(dc,binate,49) # Process each cofactor and merge their results return [ minimal_set_covers(cf0,df0), minimal_set_covers(cf1,df1) ].flatten(1) end end |
#order(cover) ⇒ Object
Sorts the cubes of a cover by weight.
Returns a new cover containing the sorted cubes.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 63 def order(cover) # Step 1: Compute the weight of each cube weights = [ 0 ] * cover.size # For that purpose first compute the weight of each column # (number of ones) col_weights = [ 0 ] * cover.width cover.width.times do |i| # cover.each_cube { |cube| col_weights[i] += 1 if cube[i] == "1" } cover.each_cube do |cube| col_weights[i] += 1 if cube.getbyte(i) == 49 end end # Then the weight of a cube is the scalar product of its # bits with the column weights. cover.each_cube.with_index do |cube,j| cube.each_byte.with_index do |bit,i| # weights[j] += col_weights[i] if bit == "1" weights[j] += col_weights[i] if bit == 49 end end # Step 2: stort the cubes by weight new_cubes = cover.each_cube.sort_by.with_index { |cube,i| weights[i] } # Creates a new cover with the sorted cubes and return it. sorted = Cover.new(*cover.each_variable) new_cubes.each { |cube| sorted << cube } return sorted end |
#reduce(on, dc) ⇒ Object
Reduces cover on esuring dc (don’t care) is not intersected.
Returns the resulting cover.
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# File 'lib/logic_tools/logicsimplify_es.rb', line 516 def reduce(on,dc) # Step 1: sorts on's cubes to achieve a better reduce. on = order(on) # print "ordered on=#{on.to_s}\n" # Step 2: reduce each cube and add it to the resulting cover. cover = Cover.new(*on.each_variable) on.each_cube.to_a.reverse_each do |cube| reduced = max_reduce(cube,on,dc) # print "cube=#{cube} reduced to #{reduced}\n" cover << reduced if reduced # Add the cube if not empty on = (on - cube) on << reduced if reduced # Add the cube if not empty end return cover end |
#smallest_sum_term(product, deadline = Float::INFINITY) ⇒ Object
Extracts from a product of sums the smallest term of the corresponding
sum of products.
NOTE: * Both the input are outputs are represented as array of arrays.
* Uses a branch and bound algorithm.
181 182 183 184 185 186 |
# File 'lib/logic_tools/minimal_column_covers.rb', line 181 def smallest_sum_term(product, deadline = Float::INFINITY) return [product[0][0]] if product.size == 1 # Create the solver and applies it return SmallestSumTerm.new(product,deadline).solve end |
#string2logic(str) ⇒ Object
The parser/gerator main fuction: converts the text in str to a
logic tree.
90 91 92 93 94 95 |
# File 'lib/logic_tools/logicparse.rb', line 90 def string2logic(str) # Remove the spaces str = str.gsub(/\s+/, "") # Parse the string return Transform.new.apply(Parser.new.parse(str)) end |
#to_sum_product_array(product) ⇒ Object
Converts a product of sum to a sum of product.
NOTE: * Both the input are outputs are represented as array of arrays.
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# File 'lib/logic_tools/minimal_column_covers.rb', line 13 def to_sum_product_array(product) return product[0].map {|term| [term] } if product.size == 1 # Generate the initial terms. sum = product[0].product(product[1]) sum.each {|term| term.sort!.uniq! } sum.uniq! # Fill then with each factor to the resulting sum of product. # print "sum = #{sum}, product=#{product}\n" (2..(product.size-1)).each do |i| sum.map! do |term| # # print "mapping #{product[i]}\n" set = [] product[i].each do |fact| if term.include?(fact) then set << term unless set.include?(term) else nterm = term.clone nterm << fact nterm.sort! set << nterm end end set end sum.flatten!(1) # print "then sum=#{sum}\n" sum.uniq! # print "now sum=#{sum}\n" # pid, size = `ps ax -o pid,rss | grep -E "^[[:space:]]*#{$$}"`.strip.split.map(&:to_i) # print "memory usage=#{size}\n" end # print "\n" return sum end |
#vars2int(vars) ⇒ Object
Converts the array of variables var to a bit vector according to
their values.
17 18 19 20 21 22 23 |
# File 'lib/logic_tools/logicsimplify_qm.rb', line 17 def vars2int(vars) res = "" vars.each_with_index do |var,i| res[i] = var.value ? "1" : "0" end res end |