Module: Rex::Arch::X86

Defined in:
lib/rex/arch/x86.rb

Overview

everything here is mostly stole from vlad’s perl x86 stuff

Defined Under Namespace

Classes: UnitTest

Constant Summary collapse

EAX =

Register number constants

AL = AX = ES = 0
ECX =
CL = CX = CS = 1
EDX =
DL = DX = SS = 2
EBX =
BL = BX = DS = 3
ESP =
AH = SP = FS = 4
EBP =
CH = BP = GS = 5
ESI =
DH = SI =      6
EDI =
BH = DI =      7
REG_NAMES32 =
[ 'eax', 'ecx', 'edx', 'ebx',
'esp', 'ebp', 'esi', 'edi' ]

Class Method Summary collapse

Class Method Details

._check_badchars(data, badchars) ⇒ Object

:nodoc:



375
376
377
378
379
380
381
# File 'lib/rex/arch/x86.rb', line 375

def self._check_badchars(data, badchars) # :nodoc:
	idx = Rex::Text.badchar_index(data, badchars)
	if idx
		raise RuntimeError, "Bad character at #{idx}", caller()
	end
	return data
end

._check_reg(*regs) ⇒ Object

:nodoc:



366
367
368
369
370
371
372
373
# File 'lib/rex/arch/x86.rb', line 366

def self._check_reg(*regs) # :nodoc:
	regs.each { |reg|
		if reg > 7 || reg < 0
			raise ArgumentError, "Invalid register #{reg}", caller()
		end
	}
	return nil
end

.add(val, reg, badchars = '', adjust = false, bits = 0) ⇒ Object

This method generates the opcodes equivalent to subtracting with a negative value from a given register.



330
331
332
# File 'lib/rex/arch/x86.rb', line 330

def self.add(val, reg, badchars = '', adjust = false, bits = 0)
	sub(val, reg, badchars, true, adjust, bits)
end

.adjust_reg(reg, adjustment) ⇒ Object

This method adjusts the value of the ESP register by a given amount.



358
359
360
361
362
363
364
# File 'lib/rex/arch/x86.rb', line 358

def self.adjust_reg(reg, adjustment)
	if (adjustment > 0)
		sub(adjustment, reg, '', false, false, 32)
	else
		add(adjustment, reg, '', true, 32)
	end
end

.call(addr) ⇒ Object

This method returns the opcodes that compose a relative call instruction to the address specified.



97
98
99
# File 'lib/rex/arch/x86.rb', line 97

def self.call(addr)
	"\xe8" + pack_dword(rel_number(addr, -5))
end

.clear(reg, badchars = '') ⇒ Object

This method generates an instruction that clears the supplied register in a manner that attempts to avoid bad characters, if supplied.



190
191
192
193
# File 'lib/rex/arch/x86.rb', line 190

def self.clear(reg, badchars = '')
	_check_reg(reg)
	return set(reg, 0, badchars)
end

.copy_to_stack(len) ⇒ Object

Generates a buffer that will copy memory immediately following the stub that is generated to be copied to the stack



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# File 'lib/rex/arch/x86.rb', line 67

def self.copy_to_stack(len)
	# four byte align
	len = (len + 3) & ~0x3

	stub =
		"\xeb\x0f"+                # jmp _end
		push_dword(len)+           # push n
		"\x59"+                    # pop ecx
		"\x5e"+                    # pop esi
		"\x29\xcc"+                # sub esp, ecx
		"\x89\xe7"+                # mov edi, esp
		"\xf3\xa4"+                # rep movsb
		"\xff\xe4"+                # jmp esp
		"\xe8\xec\xff\xff\xff"     # call _start

	stub
end

.dword_adjust(dword, amount = 0) ⇒ Object

This method adds/subs a packed long integer



43
44
45
# File 'lib/rex/arch/x86.rb', line 43

def self.dword_adjust(dword, amount=0)
	pack_dword(dword.unpack('V')[0] + amount)
end

.encode_effective(shift, dst) ⇒ Object

This method generates the encoded effective value for a register.



140
141
142
# File 'lib/rex/arch/x86.rb', line 140

def self.encode_effective(shift, dst)
	return (0xc0 | (shift << 3) | dst)
end

.encode_modrm(dst, src) ⇒ Object

This method generates the mod r/m character for a source and destination register.



148
149
150
151
# File 'lib/rex/arch/x86.rb', line 148

def self.encode_modrm(dst, src)
	_check_reg(dst, src)
	return (0xc0 | src | dst << 3).chr
end

.fpu_instructionsObject

This method returns an array of ‘safe’ FPU instructions



386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# File 'lib/rex/arch/x86.rb', line 386

def self.fpu_instructions
	fpus = []

	0xe8.upto(0xee) { |x| fpus << "\xd9" + x.chr }
	0xc0.upto(0xcf) { |x| fpus << "\xd9" + x.chr }
	0xc0.upto(0xdf) { |x| fpus << "\xda" + x.chr }
	0xc0.upto(0xdf) { |x| fpus << "\xdb" + x.chr }
	0xc0.upto(0xc7) { |x| fpus << "\xdd" + x.chr }

	fpus << "\xd9\xd0"
	fpus << "\xd9\xe1"
	fpus << "\xd9\xf6"
	fpus << "\xd9\xf7"
	fpus << "\xd9\xe5"

	# This FPU instruction seems to fail consistently on Linux
	#fpus << "\xdb\xe1"

	fpus
end

.geteip_fpu(badchars) ⇒ Object

This method returns an array containing a geteip stub, a register, and an offset This method will return nil if the getip generation fails



411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# File 'lib/rex/arch/x86.rb', line 411

def self.geteip_fpu(badchars)

	#
	# Default badchars to an empty string
	#
	badchars ||= ''

	#
	# Bail out early if D9 is restricted
	#
	return nil if badchars.index("\xd9")

	#
	# Create a list of FPU instructions
	#
	fpus = *self.fpu_instructions
	bads = []
	badchars.each_byte  do |c|
		fpus.each do |str|
			bads << str if (str.index(c.chr))
		end
	end
	bads.each { |str| fpus.delete(str) }
	return nil if fpus.length == 0

	#
	# Create a list of registers to use for fnstenv
	#
	dsts = []
	0.upto(7) do |c|
		dsts << c if (not badchars.index( (0x70+c).chr ))
	end

	if (dsts.include?(ESP) and badchars.index("\x24"))
		dsts.delete(ESP)
	end

	return nil if dsts.length == 0

	#
	# Grab a random FPU instruction
	#
	fpu = fpus[ rand(fpus.length) ]

	#
	# Grab a random register from dst
	#
	while(dsts.length > 0)
		buf = ''
		dst = dsts[ rand(dsts.length) ]
		dsts.delete(dst)

		# If the register is not ESP, copy ESP
		if (dst != ESP)
			next if badchars.index( (0x70 + dst).chr )

			if !(badchars.index("\x89") or badchars.index( (0xE0+dst).chr ))
				buf << "\x89" + (0xE0 + dst).chr
			else
				next if badchars.index("\x54")
				next if badchars.index( (0x58+dst).chr )
				buf << "\x54" + (0x58 + dst).chr
			end
		end

		pad = 0
		while (pad < (128-12) and badchars.index( (256-12-pad).chr))
			pad += 4
		end

		# Give up on finding a value to use here
		if (pad == (128-12))
			return nil
		end

		out = buf + fpu + "\xd9" + (0x70 + dst).chr
		out << "\x24" if dst == ESP
		out << (256-12-pad).chr

		regs = [*(0..7)]
		while (regs.length > 0)
			reg = regs[ rand(regs.length) ]
			regs.delete(reg)
			next if reg == ESP
			next if badchars.index( (0x58 + reg).chr )

			# Pop the value back out
			0.upto(pad / 4) { |c| out << (0x58 + reg).chr }

			# Fix the value to point to self
			gap = out.length - buf.length

			return [out, REG_NAMES32[reg].upcase, gap]
		end
	end

	return nil
end

.jmp(addr) ⇒ Object

This method returns the opcodes that compose a jump instruction to the supplied relative offset.



36
37
38
# File 'lib/rex/arch/x86.rb', line 36

def self.jmp(addr)
	"\xe9" + pack_dword(rel_number(addr))
end

.jmp_reg(str) ⇒ Object

Jump tp a specific register



28
29
30
31
32
# File 'lib/rex/arch/x86.rb', line 28

def self.jmp_reg(str)
	reg = reg_number(str)
	_check_reg(reg)
	"\xFF" + [224 + reg].pack('C')
end

.jmp_short(addr) ⇒ Object

This method returns the opcodes that compose a short jump instruction to the supplied relative offset.



89
90
91
# File 'lib/rex/arch/x86.rb', line 89

def self.jmp_short(addr)
	"\xeb" + pack_lsb(rel_number(addr, -2))
end

.mov_byte(reg, val) ⇒ Object

This method generates the opcodes that set the low byte of a given register to the supplied value.



199
200
201
202
203
# File 'lib/rex/arch/x86.rb', line 199

def self.mov_byte(reg, val)
	_check_reg(reg)
	# chr will raise RangeError if val not between 0 .. 255
	return (0xb0 | reg).chr + val.chr
end

.mov_dword(reg, val) ⇒ Object

This method generates the opcodes that set the a register to the supplied value.



221
222
223
224
# File 'lib/rex/arch/x86.rb', line 221

def self.mov_dword(reg, val)
	_check_reg(reg)
	return (0xb8 | reg).chr + pack_dword(val)
end

.mov_word(reg, val) ⇒ Object

This method generates the opcodes that set the low word of a given register to the supplied value.



209
210
211
212
213
214
215
# File 'lib/rex/arch/x86.rb', line 209

def self.mov_word(reg, val)
	_check_reg(reg)
	if val < 0 || val > 0xffff
		raise RangeError, "Can only take unsigned word values!", caller()
	end
	return "\x66" + (0xb8 | reg).chr + pack_word(val)
end

.pack_dword(num) ⇒ Object

This method wrappers packing an integer as a little-endian buffer.



344
345
346
# File 'lib/rex/arch/x86.rb', line 344

def self.pack_dword(num)
	[num].pack('V')
end

.pack_lsb(num) ⇒ Object

This method returns the least significant byte of a packed dword.



351
352
353
# File 'lib/rex/arch/x86.rb', line 351

def self.pack_lsb(num)
	pack_dword(num)[0,1]
end

.pack_word(num) ⇒ Object

This method wrappers packing a short integer as a little-endian buffer.



337
338
339
# File 'lib/rex/arch/x86.rb', line 337

def self.pack_word(num)
	[num].pack('v')
end

.pop_dword(dst) ⇒ Object

This method generates a pop dword instruction into a register.



181
182
183
184
# File 'lib/rex/arch/x86.rb', line 181

def self.pop_dword(dst)
	_check_reg(dst)
	return (0x58 | dst).chr
end

.push_byte(byte) ⇒ Object

This method generates a push byte instruction.

Raises:

  • (::ArgumentError)


156
157
158
159
160
161
162
# File 'lib/rex/arch/x86.rb', line 156

def self.push_byte(byte)
	# push byte will sign extend...
	if byte < 128 && byte >= -128
		return "\x6a" + (byte & 0xff).chr
	end
	raise ::ArgumentError, "Can only take signed byte values!", caller()
end

.push_dword(val) ⇒ Object

This method generates a push dword instruction.



174
175
176
# File 'lib/rex/arch/x86.rb', line 174

def self.push_dword(val)
	return "\x68" + pack_dword(val)
end

.push_word(val) ⇒ Object

This method generates a push word instruction.



167
168
169
# File 'lib/rex/arch/x86.rb', line 167

def self.push_word(val)
	return "\x66\x68" + pack_word(val)
end

.reg_name32(num) ⇒ Object

This method returns the register named associated with a given register number.



132
133
134
135
# File 'lib/rex/arch/x86.rb', line 132

def self.reg_name32(num)
	_check_reg(num)
	return REG_NAMES32[num].dup
end

.reg_number(str) ⇒ Object

This method returns the number associated with a named register.



124
125
126
# File 'lib/rex/arch/x86.rb', line 124

def self.reg_number(str)
	return self.const_get(str.upcase)
end

.rel_number(num, delta = 0) ⇒ Object

This method returns a number offset to the supplied string.



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# File 'lib/rex/arch/x86.rb', line 104

def self.rel_number(num, delta = 0)
	s = num.to_s

	case s[0, 2]
		when '$+'
			num = s[2 .. -1].to_i
		when '$-'
			num = -1 * s[2 .. -1].to_i
		when '0x'
			num = s.hex
		else
			delta = 0
	end

	return num + delta
end

.searcher(tag) ⇒ Object

This method returns the opcodes that compose a tag-based search routine



50
51
52
53
54
55
56
57
58
59
60
61
# File 'lib/rex/arch/x86.rb', line 50

def self.searcher(tag)
	"\xbe" + dword_adjust(tag,-1)+  # mov esi, Tag - 1
	"\x46" +                        # inc esi
	"\x47" +                        # inc edi (end_search:)
	"\x39\x37" +                    # cmp [edi],esi
	"\x75\xfb" +                    # jnz 0xa (end_search)
	"\x46" +                        # inc esi
	"\x4f" +                        # dec edi (start_search:)
	"\x39\x77\xfc" +                # cmp [edi-0x4],esi
	"\x75\xfa" +                    # jnz 0x10 (start_search)
	jmp_reg('edi')                  # jmp edi
end

.set(dst, val, badchars = '') ⇒ Object

(ie. xor eax, eax + mov al, 4 + xchg ah, al)

Raises:



232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# File 'lib/rex/arch/x86.rb', line 232

def self.set(dst, val, badchars = '')
	_check_reg(dst)

	# If the value is 0 try xor/sub dst, dst (2 bytes)
	if(val == 0)
		opcodes = Rex::Text.remove_badchars("\x29\x2b\x31\x33", badchars)
		if !opcodes.empty?
			return opcodes[rand(opcodes.length)].chr + encode_modrm(dst, dst)
		end
# TODO: SHL/SHR
# TODO: AND
	end

	# try push BYTE val; pop dst (3 bytes)
	begin
		return _check_badchars(push_byte(val) + pop_dword(dst), badchars)
	rescue ::ArgumentError, ::RuntimeError, ::RangeError
	end

	# try clear dst, mov BYTE dst (4 bytes)
	begin
		# break if val == 0
		return _check_badchars(clear(dst, badchars) + mov_byte(dst, val), badchars)
	rescue ::ArgumentError, ::RuntimeError, ::RangeError
	end

	# try mov DWORD dst (5 bytes)
	begin
		return _check_badchars(mov_dword(dst, val), badchars)
	rescue ::ArgumentError, ::RuntimeError, ::RangeError
	end

	# try push DWORD, pop dst (6 bytes)
	begin
		return _check_badchars(push_dword(val) + pop_dword(dst), badchars)
	rescue ::ArgumentError, ::RuntimeError, ::RangeError
	end

	# try clear dst, mov WORD dst (6 bytes)
	begin
		# break if val == 0
		return _check_badchars(clear(dst, badchars) + mov_word(dst, val), badchars)
	rescue ::ArgumentError, ::RuntimeError, ::RangeError
	end

	raise RuntimeError, "No valid set instruction could be created!", caller()
end

.sub(val, reg, badchars = '', add = false, adjust = false, bits = 0) ⇒ Object

Builds a subtraction instruction using the supplied operand and register.



284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# File 'lib/rex/arch/x86.rb', line 284

def self.sub(val, reg, badchars = '', add = false, adjust = false, bits = 0)
	opcodes = []
	shift   = (add == true) ? 0 : 5

	if (bits <= 8 and val >= -0x7f and val <= 0x7f)
		opcodes <<
			((adjust) ? '' : clear(reg, badchars)) +
			"\x83" +
			[ encode_effective(shift, reg) ].pack('C') +
			[ val.to_i ].pack('C')
	end

	if (bits <= 16 and val >= -0xffff and val <= 0)
		opcodes <<
			((adjust) ? '' : clear(reg, badchars)) +
			"\x66\x81" +
			[ encode_effective(shift, reg) ].pack('C') +
			[ val.to_i ].pack('v')
	end

	opcodes <<
		((adjust) ? '' : clear(reg, badchars)) +
		"\x81" +
		[ encode_effective(shift, reg) ].pack('C') +
		[ val.to_i ].pack('V')

	# Search for a compatible opcode
	opcodes.each { |op|
		begin
			_check_badchars(op, badchars)
		rescue
			next
		end

		return op
	}

	if opcodes.empty?
		raise RuntimeError, "Could not find a usable opcode", caller()
	end
end