Class: OpenTox::RegressionCrossValidation

Inherits:
CrossValidation show all
Defined in:
lib/crossvalidation.rb

Instance Method Summary collapse

Methods inherited from CrossValidation

create, #model, #time, #validations

Instance Method Details

#confidence_plotObject



246
247
248
249
250
251
252
253
254
255
256
257
258
259
# File 'lib/crossvalidation.rb', line 246

def confidence_plot
  tmpfile = "/tmp/#{id.to_s}_confidence.png"
  sorted_predictions = predictions.collect{|p| [(Math.log10(p[1])-Math.log10(p[2])).abs,p[3]] if p[1] and p[2]}.compact
  R.assign "error", sorted_predictions.collect{|p| p[0]}
  R.assign "confidence", sorted_predictions.collect{|p| p[1]}
  # TODO fix axis names
  R.eval "image = qplot(confidence,error)"
  R.eval "image = image + stat_smooth(method='lm', se=FALSE)"
  R.eval "ggsave(file='#{tmpfile}', plot=image)"
  file = Mongo::Grid::File.new(File.read(tmpfile), :filename => "#{self.id.to_s}_confidence_plot.png")
  plot_id = $gridfs.insert_one(file)
  update(:confidence_plot_id => plot_id)
  $gridfs.find_one(_id: confidence_plot_id).data
end

#correlation_plotObject



261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# File 'lib/crossvalidation.rb', line 261

def correlation_plot
  unless correlation_plot_id
    tmpfile = "/tmp/#{id.to_s}_correlation.png"
    x = predictions.collect{|p| p[1]}
    y = predictions.collect{|p| p[2]}
    attributes = Model::Lazar.find(self.model_id).attributes
    attributes.delete_if{|key,_| key.match(/_id|_at/) or ["_id","creator","name"].include? key}
    attributes = attributes.values.collect{|v| v.is_a?(String) ? v.sub(/OpenTox::/,'') : v}.join("\n")
    R.assign "measurement", x
    R.assign "prediction", y
    R.eval "all = c(-log(measurement),-log(prediction))"
    R.eval "range = c(min(all), max(all))"
    R.eval "image = qplot(-log(prediction),-log(measurement),main='#{self.name}',asp=1,xlim=range, ylim=range)"
    R.eval "image = image + geom_abline(intercept=0, slope=1)"
    R.eval "ggsave(file='#{tmpfile}', plot=image)"
    file = Mongo::Grid::File.new(File.read(tmpfile), :filename => "#{self.id.to_s}_correlation_plot.png")
    plot_id = $gridfs.insert_one(file)
    update(:correlation_plot_id => plot_id)
  end
  $gridfs.find_one(_id: correlation_plot_id).data
end

#misclassifications(n = nil) ⇒ Object



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# File 'lib/crossvalidation.rb', line 216

def misclassifications n=nil
  #n = predictions.size unless n
  n ||= 10 
  model = Model::Lazar.find(self.model_id)
  training_dataset = Dataset.find(model.training_dataset_id)
  prediction_feature = training_dataset.features.first
  predictions.collect do |p|
    unless p.include? nil
      compound = Compound.find(p[0])
      neighbors = compound.send(model.neighbor_algorithm,model.neighbor_algorithm_parameters)
      neighbors.collect! do |n|
        neighbor = Compound.find(n[0])
        values = training_dataset.values(neighbor,prediction_feature)
        { :smiles => neighbor.smiles, :similarity => n[1], :measurements => values}
      end
      {
        :smiles => compound.smiles, 
        #:fingerprint => compound.fp4.collect{|id|  Smarts.find(id).name},
        :measured => p[1],
        :predicted => p[2],
        #:relative_error => (Math.log10(p[1])-Math.log10(p[2])).abs/Math.log10(p[1]).to_f.abs,
        :log_error => (Math.log10(p[1])-Math.log10(p[2])).abs,
        :relative_error => (p[1]-p[2]).abs/p[1],
        :confidence => p[3],
        :neighbors => neighbors
      }
    end
  end.compact.sort{|a,b| b[:relative_error] <=> a[:relative_error]}[0..n-1]
end

#statisticsObject



171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# File 'lib/crossvalidation.rb', line 171

def statistics
  rmse = 0
  mae = 0
  x = []
  y = []
  predictions.each do |pred|
    compound_id,activity,prediction,confidence = pred
    if activity and prediction 
      unless activity == [nil]
        x << -Math.log10(activity.median)
        y << -Math.log10(prediction)
        error = Math.log10(prediction)-Math.log10(activity.median)
        rmse += error**2
        #weighted_rmse += confidence*error**2
        mae += error.abs
        #weighted_mae += confidence*error.abs
        #confidence_sum += confidence
      end
    else
      warnings << "No training activities for #{Compound.find(compound_id).smiles} in training dataset #{model.training_dataset_id}."
      $logger.debug "No training activities for #{Compound.find(compound_id).smiles} in training dataset #{model.training_dataset_id}."
    end
  end
  R.assign "measurement", x
  R.assign "prediction", y
  R.eval "r <- cor(measurement,prediction,use='complete')"
  r = R.eval("r").to_ruby

  mae = mae/predictions.size
  #weighted_mae = weighted_mae/confidence_sum
  rmse = Math.sqrt(rmse/predictions.size)
  #weighted_rmse = Math.sqrt(weighted_rmse/confidence_sum)
  update_attributes(
    mae: mae,
    rmse: rmse,
    #weighted_mae: weighted_mae,
    #weighted_rmse: weighted_rmse,
    r_squared: r**2,
    finished_at: Time.now
  )
  $logger.debug "R^2 #{r**2}"
  $logger.debug "RMSE #{rmse}"
  $logger.debug "MAE #{mae}"
end