Class: OpenTox::ClassificationLeaveOneOutValidation

Inherits:
LeaveOneOutValidation show all
Defined in:
lib/leave-one-out-validation.rb

Instance Method Summary collapse

Methods inherited from LeaveOneOutValidation

create, #model

Instance Method Details

#confidence_plotObject



94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# File 'lib/leave-one-out-validation.rb', line 94

def confidence_plot
  unless confidence_plot_id
    tmpfile = "/tmp/#{id.to_s}_confidence.svg"
    accuracies = []
    confidences = []
    correct_predictions = 0
    incorrect_predictions = 0
    predictions.each do |p|
      p[:database_activities].each do |db_act|
        if p[:value] 
          p[:value] == db_act ? correct_predictions += 1 : incorrect_predictions += 1
          accuracies << correct_predictions/(correct_predictions+incorrect_predictions).to_f
          confidences << p[:confidence]

        end
      end
    end
    R.assign "accuracy", accuracies
    R.assign "confidence", confidences
    R.eval "image = qplot(confidence,accuracy)+ylab('accumulated accuracy')+scale_x_reverse()"
    R.eval "ggsave(file='#{tmpfile}', plot=image)"
    file = Mongo::Grid::File.new(File.read(tmpfile), :filename => "#{self.id.to_s}_confidence_plot.svg")
    plot_id = $gridfs.insert_one(file)
    update(:confidence_plot_id => plot_id)
  end
  $gridfs.find_one(_id: confidence_plot_id).data
end

#statisticsObject



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# File 'lib/leave-one-out-validation.rb', line 44

def statistics
  accept_values = Feature.find(model.prediction_feature_id).accept_values
  confusion_matrix = Array.new(accept_values.size,0){Array.new(accept_values.size,0)}
  weighted_confusion_matrix = Array.new(accept_values.size,0){Array.new(accept_values.size,0)}
  predictions.each do |pred|
    pred[:database_activities].each do |db_act|
      if pred[:value]
        if pred[:value] == db_act
          if pred[:value] == accept_values[0]
            confusion_matrix[0][0] += 1
            weighted_confusion_matrix[0][0] += pred[:confidence]
          elsif pred[:value] == accept_values[1]
            confusion_matrix[1][1] += 1
            weighted_confusion_matrix[1][1] += pred[:confidence]
          end
        else
          if pred[:value] == accept_values[0]
            confusion_matrix[0][1] += 1
            weighted_confusion_matrix[0][1] += pred[:confidence]
          elsif pred[:value] == accept_values[1]
            confusion_matrix[1][0] += 1
            weighted_confusion_matrix[1][0] += pred[:confidence]
          end
        end
      end
    end
  end
  accept_values.each_with_index do |v,i|
    true_rate[v] = confusion_matrix[i][i]/confusion_matrix[i].reduce(:+).to_f
    predictivity[v] = confusion_matrix[i][i]/confusion_matrix.collect{|n| n[i]}.reduce(:+).to_f
  end
  confidence_sum = 0
  weighted_confusion_matrix.each do |r|
    r.each do |c|
      confidence_sum += c
    end
  end
  update_attributes(
    accept_values: accept_values,
    confusion_matrix: confusion_matrix,
    weighted_confusion_matrix: weighted_confusion_matrix,
    accuracy: (confusion_matrix[0][0]+confusion_matrix[1][1])/(nr_instances-nr_unpredicted).to_f,
    weighted_accuracy: (weighted_confusion_matrix[0][0]+weighted_confusion_matrix[1][1])/confidence_sum.to_f,
    true_rate: true_rate,
    predictivity: predictivity,
    finished_at: Time.now
  )
  $logger.debug "Accuracy #{accuracy}"
end