Class: LangGraphRB::ChatOpenAI

Inherits:
LLMBase
  • Object
show all
Defined in:
lib/langgraph_rb/chat_openai.rb

Overview

ChatOpenAI wrapper compatible with LLMBase, supporting tool binding

Instance Attribute Summary

Attributes inherited from LLMBase

#model, #temperature

Instance Method Summary collapse

Methods inherited from LLMBase

#bound_tools, #set_observers

Constructor Details

#initialize(model:, temperature: 0.0, api_key: ENV['OPENAI_API_KEY'], client: nil) ⇒ ChatOpenAI

Returns a new instance of ChatOpenAI.



11
12
13
14
15
16
17
18
# File 'lib/langgraph_rb/chat_openai.rb', line 11

def initialize(model:, temperature: 0.0, api_key: ENV['OPENAI_API_KEY'], client: nil)
  super(model: model, temperature: temperature)
  @client = client || OpenAI::Client.new(api_key: api_key)

  unless @client.respond_to?(:chat) && @client.chat.respond_to?(:completions)
    raise "LangGraphRB::ChatOpenAI expects 'openai' gem ~> 0.24 (client.chat.completions.create)"
  end
end

Instance Method Details

#bind_tools(tools) ⇒ Object

Returns a new instance with tools bound (non-destructive)



21
22
23
24
25
26
# File 'lib/langgraph_rb/chat_openai.rb', line 21

def bind_tools(tools)
  dup_instance = self.class.new(model: @model, temperature: @temperature)      
  dup_instance.instance_variable_set(:@client, @client)
  dup_instance.instance_variable_set(:@bound_tools, Array(tools))
  dup_instance
end

#call(messages, tools: nil) ⇒ Object

messages: array of { role: ‘system’|‘user’|‘assistant’|‘tool’, content: string, tool_calls?: […] } tools: optional array of tool definitions (objects responding to .to_openai_tool_schema) Returns assistant text string or a tool-call envelope hash when tool calls are produced



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# File 'lib/langgraph_rb/chat_openai.rb', line 31

def call(messages, tools: nil)
  raise ArgumentError, 'messages must be an Array' unless messages.is_a?(Array)

  tool_definitions = (tools || @bound_tools)
  tool_schemas = Array(tool_definitions).flat_map do |tool|
    if tool.respond_to?(:to_openai_tool_schema)
      Array(tool.to_openai_tool_schema)
    else
      [tool]
    end
  end

  request_payload = {
    model: @model,
    temperature: @temperature,
    messages: normalize_messages(messages)
  }

  if tool_schemas && !tool_schemas.empty?
    request_payload[:tools] = tool_schemas
    request_payload[:tool_choice] = 'auto'
  end

  notify_llm_request({
    name: 'OpenAI::ChatCompletion',
    model: @model,
    model_parameters: { temperature: @temperature },
    input: request_payload[:messages]
  })

  # openai 0.24.0 uses client.chat.completions.create(params)
  response = @client.chat.completions.create(request_payload)

  message = extract_message_from_response(response)
  tool_calls = message[:tool_calls]
  text_content = message[:content] 

  usage = extract_usage_from_response(response)
  notify_llm_response({
    output: tool_calls ? { tool_calls: tool_calls } : text_content,
    prompt_tokens: usage[:prompt_tokens],
    completion_tokens: usage[:completion_tokens],
    total_tokens: usage[:total_tokens]
  })

  if tool_calls && !tool_calls.empty?
    normalized_calls = tool_calls.map do |tc|
      {
        id: tc[:id],
        name: tc[:function][:name],
        arguments: parse_tool_arguments(tc[:function][:arguments])
      }
    end
    { tool_calls: normalized_calls }
  else
    text_content
  end
rescue => e
  notify_llm_error({
    error: e.message
  })
  raise e
end