Class: Kubevirt::V1MemoryStatus
- Inherits:
-
ApiModelBase
- Object
- ApiModelBase
- Kubevirt::V1MemoryStatus
- Defined in:
- lib/kubevirt/models/v1_memory_status.rb
Instance Attribute Summary collapse
-
#guest_at_boot ⇒ Object
Quantity is a fixed-point representation of a number.
-
#guest_current ⇒ Object
Quantity is a fixed-point representation of a number.
-
#guest_requested ⇒ Object
Quantity is a fixed-point representation of a number.
Class Method Summary collapse
-
.acceptable_attribute_map ⇒ Object
Returns attribute mapping this model knows about.
-
.acceptable_attributes ⇒ Object
Returns all the JSON keys this model knows about.
-
.attribute_map ⇒ Object
Attribute mapping from ruby-style variable name to JSON key.
-
.build_from_hash(attributes) ⇒ Object
Builds the object from hash.
-
.openapi_nullable ⇒ Object
List of attributes with nullable: true.
-
.openapi_types ⇒ Object
Attribute type mapping.
Instance Method Summary collapse
-
#==(o) ⇒ Object
Checks equality by comparing each attribute.
- #eql?(o) ⇒ Boolean
-
#hash ⇒ Integer
Calculates hash code according to all attributes.
-
#initialize(attributes = {}) ⇒ V1MemoryStatus
constructor
Initializes the object.
-
#list_invalid_properties ⇒ Object
Show invalid properties with the reasons.
-
#to_hash ⇒ Hash
Returns the object in the form of hash.
-
#valid? ⇒ Boolean
Check to see if the all the properties in the model are valid.
Methods inherited from ApiModelBase
_deserialize, #_to_hash, #to_body, #to_s
Constructor Details
#initialize(attributes = {}) ⇒ V1MemoryStatus
Initializes the object
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 63 def initialize(attributes = {}) if (!attributes.is_a?(Hash)) fail ArgumentError, "The input argument (attributes) must be a hash in `Kubevirt::V1MemoryStatus` initialize method" end # check to see if the attribute exists and convert string to symbol for hash key acceptable_attribute_map = self.class.acceptable_attribute_map attributes = attributes.each_with_object({}) { |(k, v), h| if (!acceptable_attribute_map.key?(k.to_sym)) fail ArgumentError, "`#{k}` is not a valid attribute in `Kubevirt::V1MemoryStatus`. Please check the name to make sure it's valid. List of attributes: " + acceptable_attribute_map.keys.inspect end h[k.to_sym] = v } if attributes.key?(:'guest_at_boot') self.guest_at_boot = attributes[:'guest_at_boot'] end if attributes.key?(:'guest_current') self.guest_current = attributes[:'guest_current'] end if attributes.key?(:'guest_requested') self.guest_requested = attributes[:'guest_requested'] end end |
Instance Attribute Details
#guest_at_boot ⇒ Object
Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors. The serialization format is: “‘ <quantity> ::= <signedNumber><suffix> (Note that <suffix> may be empty, from the "" case in <decimalSI>.) <digit> ::= 0 | 1 | … | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= "+" | "-" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei (International System of units; See: physics.nist.gov/cuu/Units/binary.html) <decimalSI> ::= m | "" | k | M | G | T | P | E (Note that 1024 = 1Ki but 1000 = 1k; I didn’t choose the capitalization.) <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber> “‘ No matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities. When a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized. Before serializing, Quantity will be put in "canonical form". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that: - No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible. The sign will be omitted unless the number is negative. Examples: - 1.5 will be serialized as "1500m" - 1.5Gi will be serialized as "1536Mi" Note that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise. Non-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don’t diff.) This format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation.
19 20 21 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 19 def guest_at_boot @guest_at_boot end |
#guest_current ⇒ Object
Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors. The serialization format is: “‘ <quantity> ::= <signedNumber><suffix> (Note that <suffix> may be empty, from the "" case in <decimalSI>.) <digit> ::= 0 | 1 | … | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= "+" | "-" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei (International System of units; See: physics.nist.gov/cuu/Units/binary.html) <decimalSI> ::= m | "" | k | M | G | T | P | E (Note that 1024 = 1Ki but 1000 = 1k; I didn’t choose the capitalization.) <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber> “‘ No matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities. When a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized. Before serializing, Quantity will be put in "canonical form". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that: - No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible. The sign will be omitted unless the number is negative. Examples: - 1.5 will be serialized as "1500m" - 1.5Gi will be serialized as "1536Mi" Note that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise. Non-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don’t diff.) This format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation.
22 23 24 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 22 def guest_current @guest_current end |
#guest_requested ⇒ Object
Quantity is a fixed-point representation of a number. It provides convenient marshaling/unmarshaling in JSON and YAML, in addition to String() and AsInt64() accessors. The serialization format is: “‘ <quantity> ::= <signedNumber><suffix> (Note that <suffix> may be empty, from the "" case in <decimalSI>.) <digit> ::= 0 | 1 | … | 9 <digits> ::= <digit> | <digit><digits> <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits> <sign> ::= "+" | "-" <signedNumber> ::= <number> | <sign><number> <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI> <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei (International System of units; See: physics.nist.gov/cuu/Units/binary.html) <decimalSI> ::= m | "" | k | M | G | T | P | E (Note that 1024 = 1Ki but 1000 = 1k; I didn’t choose the capitalization.) <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber> “‘ No matter which of the three exponent forms is used, no quantity may represent a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal places. Numbers larger or more precise will be capped or rounded up. (E.g.: 0.1m will rounded up to 1m.) This may be extended in the future if we require larger or smaller quantities. When a Quantity is parsed from a string, it will remember the type of suffix it had, and will use the same type again when it is serialized. Before serializing, Quantity will be put in "canonical form". This means that Exponent/suffix will be adjusted up or down (with a corresponding increase or decrease in Mantissa) such that: - No precision is lost - No fractional digits will be emitted - The exponent (or suffix) is as large as possible. The sign will be omitted unless the number is negative. Examples: - 1.5 will be serialized as "1500m" - 1.5Gi will be serialized as "1536Mi" Note that the quantity will NEVER be internally represented by a floating point number. That is the whole point of this exercise. Non-canonical values will still parse as long as they are well formed, but will be re-emitted in their canonical form. (So always use canonical form, or don’t diff.) This format is intended to make it difficult to use these numbers without writing some sort of special handling code in the hopes that that will cause implementors to also use a fixed point implementation.
25 26 27 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 25 def guest_requested @guest_requested end |
Class Method Details
.acceptable_attribute_map ⇒ Object
Returns attribute mapping this model knows about
37 38 39 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 37 def self.acceptable_attribute_map attribute_map end |
.acceptable_attributes ⇒ Object
Returns all the JSON keys this model knows about
42 43 44 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 42 def self.acceptable_attributes acceptable_attribute_map.values end |
.attribute_map ⇒ Object
Attribute mapping from ruby-style variable name to JSON key.
28 29 30 31 32 33 34 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 28 def self.attribute_map { :'guest_at_boot' => :'guestAtBoot', :'guest_current' => :'guestCurrent', :'guest_requested' => :'guestRequested' } end |
.build_from_hash(attributes) ⇒ Object
Builds the object from hash
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 130 def self.build_from_hash(attributes) return nil unless attributes.is_a?(Hash) attributes = attributes.transform_keys(&:to_sym) transformed_hash = {} openapi_types.each_pair do |key, type| if attributes.key?(attribute_map[key]) && attributes[attribute_map[key]].nil? transformed_hash["#{key}"] = nil elsif type =~ /\AArray<(.*)>/i # check to ensure the input is an array given that the attribute # is documented as an array but the input is not if attributes[attribute_map[key]].is_a?(Array) transformed_hash["#{key}"] = attributes[attribute_map[key]].map { |v| _deserialize($1, v) } end elsif !attributes[attribute_map[key]].nil? transformed_hash["#{key}"] = _deserialize(type, attributes[attribute_map[key]]) end end new(transformed_hash) end |
.openapi_nullable ⇒ Object
List of attributes with nullable: true
56 57 58 59 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 56 def self.openapi_nullable Set.new([ ]) end |
.openapi_types ⇒ Object
Attribute type mapping.
47 48 49 50 51 52 53 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 47 def self.openapi_types { :'guest_at_boot' => :'Object', :'guest_current' => :'Object', :'guest_requested' => :'Object' } end |
Instance Method Details
#==(o) ⇒ Object
Checks equality by comparing each attribute.
107 108 109 110 111 112 113 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 107 def ==(o) return true if self.equal?(o) self.class == o.class && guest_at_boot == o.guest_at_boot && guest_current == o.guest_current && guest_requested == o.guest_requested end |
#eql?(o) ⇒ Boolean
117 118 119 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 117 def eql?(o) self == o end |
#hash ⇒ Integer
Calculates hash code according to all attributes.
123 124 125 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 123 def hash [guest_at_boot, guest_current, guest_requested].hash end |
#list_invalid_properties ⇒ Object
Show invalid properties with the reasons. Usually used together with valid?
92 93 94 95 96 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 92 def list_invalid_properties warn '[DEPRECATED] the `list_invalid_properties` method is obsolete' invalid_properties = Array.new invalid_properties end |
#to_hash ⇒ Hash
Returns the object in the form of hash
152 153 154 155 156 157 158 159 160 161 162 163 164 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 152 def to_hash hash = {} self.class.attribute_map.each_pair do |attr, param| value = self.send(attr) if value.nil? is_nullable = self.class.openapi_nullable.include?(attr) next if !is_nullable || (is_nullable && !instance_variable_defined?(:"@#{attr}")) end hash[param] = _to_hash(value) end hash end |
#valid? ⇒ Boolean
Check to see if the all the properties in the model are valid
100 101 102 103 |
# File 'lib/kubevirt/models/v1_memory_status.rb', line 100 def valid? warn '[DEPRECATED] the `valid?` method is obsolete' true end |