Class: CycletimeHistogram

Inherits:
ChartBase show all
Includes:
GroupableIssueChart
Defined in:
lib/jirametrics/cycletime_histogram.rb

Instance Attribute Summary collapse

Attributes inherited from ChartBase

#aggregated_project, #all_boards, #atlassian_document_format, #board_id, #canvas_height, #canvas_width, #data_quality, #date_range, #file_system, #holiday_dates, #issues, #settings, #time_range, #timezone_offset

Instance Method Summary collapse

Methods included from GroupableIssueChart

#group_issues, #grouping_rules, #init_configuration_block

Methods inherited from ChartBase

#aggregated_project?, #canvas, #canvas_responsive?, #chart_format, #collapsible_issues_panel, #color_block, #color_for, #completed_issues_in_range, #current_board, #daily_chart_dataset, #describe_non_working_days, #description_text, #format_integer, #format_status, #header_text, #holidays, #html_directory, #icon_span, #label_days, #label_issues, #link_to_issue, #next_id, #random_color, #render, #render_top_text, #status_category_color, #working_days_annotation, #wrap_and_render

Constructor Details

#initialize(block) ⇒ CycletimeHistogram

Returns a new instance of CycletimeHistogram.



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# File 'lib/jirametrics/cycletime_histogram.rb', line 10

def initialize block
  super()

  percentiles [50, 85, 98]
  @show_stats = true

  header_text 'Cycletime Histogram'
  description_text <<-HTML
    <p>
      The Cycletime Histogram shows how many items completed in a certain timeframe. This can be
      useful for determining how many different types of work are flowing through, based on the
      lengths of time they take.
    </p>
  HTML

  init_configuration_block(block) do
    grouping_rules do |issue, rule|
      rule.label = issue.type
      rule.color = color_for type: issue.type
    end
  end
end

Instance Attribute Details

#possible_statusesObject

Returns the value of attribute possible_statuses.



7
8
9
# File 'lib/jirametrics/cycletime_histogram.rb', line 7

def possible_statuses
  @possible_statuses
end

#show_statsObject (readonly)

Returns the value of attribute show_stats.



8
9
10
# File 'lib/jirametrics/cycletime_histogram.rb', line 8

def show_stats
  @show_stats
end

Instance Method Details

#data_set_for(histogram_data:, label:, color:) ⇒ Object



123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# File 'lib/jirametrics/cycletime_histogram.rb', line 123

def data_set_for histogram_data:, label:, color:
  keys = histogram_data.keys.sort
  {
    type: 'bar',
    label: label,
    data: keys.sort.filter_map do |key|
      next if histogram_data[key].zero?

      {
        x: key,
        y: histogram_data[key],
        title: "#{histogram_data[key]} items completed in #{label_days key}"
      }
    end,
    backgroundColor: color,
    borderRadius: 0
  }
end

#disable_statsObject



38
39
40
# File 'lib/jirametrics/cycletime_histogram.rb', line 38

def disable_stats
  @show_stats = false
end

#histogram_data_for(issues:) ⇒ Object



72
73
74
75
76
77
78
79
# File 'lib/jirametrics/cycletime_histogram.rb', line 72

def histogram_data_for issues:
  count_hash = {}
  issues.each do |issue|
    days = issue.board.cycletime.cycletime(issue)
    count_hash[days] = (count_hash[days] || 0) + 1 if days.positive?
  end
  count_hash
end

#percentiles(percs = nil) ⇒ Object



33
34
35
36
# File 'lib/jirametrics/cycletime_histogram.rb', line 33

def percentiles percs = nil
  @percentiles = percs unless percs.nil?
  @percentiles
end

#runObject



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# File 'lib/jirametrics/cycletime_histogram.rb', line 42

def run
  stopped_issues = completed_issues_in_range include_unstarted: true

  # For the histogram, we only want to consider items that have both a start and a stop time.
  histogram_issues = stopped_issues.select { |issue| issue.board.cycletime.started_stopped_times(issue).first }
  rules_to_issues = group_issues histogram_issues

  the_stats = {}

  overall_stats = stats_for histogram_data: histogram_data_for(issues: histogram_issues), percentiles: @percentiles
  the_stats[:all] = overall_stats
  data_sets = rules_to_issues.keys.collect do |rules|
    the_issue_type = rules.label
    the_histogram = histogram_data_for(issues: rules_to_issues[rules])
    the_stats[the_issue_type] = stats_for histogram_data: the_histogram, percentiles: @percentiles if @show_stats

    data_set_for(
      histogram_data: the_histogram,
      label: the_issue_type,
      color: rules.color
    )
  end

  if data_sets.empty?
    return "<h1 class='foldable'>#{@header_text}</h1><div>No data matched the selected criteria. Nothing to show.</div>"
  end

  wrap_and_render(binding, __FILE__)
end

#stats_for(histogram_data:, percentiles:) ⇒ Object



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# File 'lib/jirametrics/cycletime_histogram.rb', line 81

def stats_for histogram_data:, percentiles:
  return {} if histogram_data.empty?

  total_values = histogram_data.values.sum

  # Calculate the average
  weighted_sum = histogram_data.reduce(0) { |sum, (value, frequency)| sum + (value * frequency) }
  average = total_values.zero? ? 0 : weighted_sum.to_f / total_values

  # Find the mode (or modes!) and the spread of the distribution
  sorted_histogram = histogram_data.sort_by { |_value, frequency| frequency }
  max_freq = sorted_histogram[-1][1]
  mode = sorted_histogram.select { |_v, f| f == max_freq }

  minmax = histogram_data.keys.minmax

  # Calculate percentiles
  sorted_values = histogram_data.keys.sort
  cumulative_counts = {}
  cumulative_sum = 0

  sorted_values.each do |value|
    cumulative_sum += histogram_data[value]
    cumulative_counts[value] = cumulative_sum
  end

  percentile_results = {}
  percentiles.each do |percentile|
    rank = (percentile / 100.0) * total_values
    percentile_value = sorted_values.find { |value| cumulative_counts[value] >= rank }
    percentile_results[percentile] = percentile_value
  end

  {
    average: average,
    mode: mode.collect(&:first).sort,
    min: minmax[0],
    max: minmax[1],
    percentiles: percentile_results
  }
end