Module: JapanPlaneRectangular::Functions
- Includes:
- Constants
- Included in:
- JapanPlaneRectangular
- Defined in:
- lib/japan_plane_rectangular/functions.rb
Constant Summary
Constants included from Constants
Constants::ECCENTRICITY, Constants::GRS80_ER, Constants::GRS80_IF, Constants::M0, Constants::ORIGINS
Instance Method Summary collapse
-
#nearest_zone(latlon) ⇒ Object
Find nearest zone number by [Latitude, Longitude].
-
#to_latlon(xy, zone) ⇒ Array<Float>
Convert to latlon from XY in zone.
-
#to_xy(point, zone) ⇒ Array<Float>
Convert to XY from latlon in zone.
Instance Method Details
#nearest_zone(latlon) ⇒ Object
Find nearest zone number by [Latitude, Longitude]
12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
# File 'lib/japan_plane_rectangular/functions.rb', line 12 def nearest_zone(latlon) min_index = 0 min_val = Float::MAX ORIGINS.each_with_index do |origin, i| xy1 = to_xy(latlon, 7) xy2 = to_xy(origin, 7) d = distance(xy1, xy2) if d < min_val min_index = i min_val = d end end min_index + 1 # zone number end |
#to_latlon(xy, zone) ⇒ Array<Float>
Convert to latlon from XY in zone
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# File 'lib/japan_plane_rectangular/functions.rb', line 75 def to_latlon(xy, zone) raise ArgumentError, 'Invalid zone number' unless 1 <= zone && zone <= 19 origin_point = ORIGINS[zone - 1] (x, y) = xy phi0 = to_radian(origin_point[0]) lamda0 = to_radian(origin_point[1]) phi1 = perpendicular(x, phi0) ut = GRS80_ER / Math.sqrt(1.0 - ECCENTRICITY**2.0 * Math.sin(phi1)**2.0) conp = Math.cos(phi1) t1 = Math.tan(phi1) eta2 = (ECCENTRICITY**2.0 / (1.0 - ECCENTRICITY**2.0)) * conp**2.0 yy = y / M0 v1 = 1.0 + eta2 v2 = 5.0 + 3.0 * t1**2.0 + 6.0 * eta2 - 6.0 * t1**2.0 * eta2 - 3.0 * eta2**2.0 - 9.0 * t1**2.0 * eta2**2.0 v3 = 61.0 + 90.0 * t1**2.0 + 45.0 * t1**4.0 + 107.0 * eta2 - 162.0 * t1**2.0 * eta2 - 45.0 * t1**4.0 * eta2 v4 = 1385.0 + 3633.0 * t1**2.0 + 4095.0 * t1**4.0 + 1575.0 * t1**6.0 phir = -(v1 / (2.0 * ut**2.0)) * yy**2.0 phir += (v2 / (24.0 * ut**4.0)) * yy**4.0 phir -= (v3 / (720.0 * ut**6.0)) * yy**6.0 phir += (v4 / (40320.0 * ut**8.0)) * yy**8.0 phir *= t1 phir += phi1 phir = to_degree(phir) v1 = ut * conp v2 = 1.0 + 2.0 * t1**2.0 + eta2 v3 = 5.0 + 28.0 * t1**2.0 + 24.0 * t1**4.0 + 6.0 * eta2 + 8.0 * t1**2.0 * eta2 v4 = 61.0 + 662.0 * t1**2.0 + 1320.0 * t1**4.0 + 720.0 * t1**6.0 lamdar = (1.0 / v1) * yy lamdar -= (v2 / (6.0 * ut**2.0 * v1)) * yy**3.0 lamdar += (v3 / (120.0 * ut**4.0 * v1)) * yy**5.0 lamdar -= (v4 / (5040.0 * ut**6.0 * v1)) * yy**7.0 lamdar += lamda0 lamdar = to_degree(lamdar) [phir, lamdar] end |
#to_xy(point, zone) ⇒ Array<Float>
Convert to XY from latlon in zone
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/japan_plane_rectangular/functions.rb', line 31 def to_xy(point, zone) raise ArgumentError, 'Invalid zone number' unless 1 <= zone && zone <= 19 origin_point = ORIGINS[zone - 1] phi0 = to_radian(origin_point[0]) lamda0 = to_radian(origin_point[1]) phi1 = to_radian(point[0]) lamda1 = to_radian(point[1]) s0 = meridian_arc_length(phi0) s1 = meridian_arc_length(phi1) ut = GRS80_ER / Math.sqrt(1.0 - ECCENTRICITY**2.0 * Math.sin(phi1)**2.0) conp = Math.cos(phi1) t1 = Math.tan(phi1) dlamda = lamda1 - lamda0 eta2 = (ECCENTRICITY**2.0 / (1.0 - ECCENTRICITY**2.0)) * conp**2.0 v1 = 5.0 - t1**2.0 + 9.0 * eta2 + 4.0 * eta2**2.0 v2 = -61.0 + 58.0 * t1**2.0 - t1**4.0 - 270.0 * eta2 + 330.0 * t1**2.0 * eta2 v3 = -1385.0 + 3111.0 * t1**2.0 - 543.0 * t1**4.0 + t1**6.0 x = ((s1 - s0) + ut * conp**2.0 * t1 * dlamda**2.0 / 2.0 + ut * conp**4.0 * t1 * v1 * dlamda**4.0 / 24.0 - ut * conp**6.0 * t1 * v2 * dlamda**6.0 / 720.0 - ut * conp**8.0 * t1 * v3 * dlamda**8.0 / 40320.0) * M0 v1 = -1.0 + t1**2.0 - eta2 v2 = -5.0 + 18.0 * t1**2.0 - t1**4.0 - 14.0 * eta2 + 58.0 * t1**2.0 * eta2 v3 = -61.0 + 479.0 * t1**2.0 - 179.0 * t1**4.0 + t1**6.0 y = (ut * conp * dlamda - ut * conp**3.0 * v1 * dlamda**3.0 / 6.0 - ut * conp**5.0 * v2 * dlamda**5.0 / 120.0 - ut * conp**7.0 * v3 * dlamda**7.0 / 5040.0) * M0 [x, y] end |