Class: Informers::TextGenerationPipeline
- Defined in:
- lib/informers/pipelines.rb
Instance Method Summary collapse
Methods inherited from Pipeline
Constructor Details
This class inherits a constructor from Informers::Pipeline
Instance Method Details
#call(texts, **generate_kwargs) ⇒ Object
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# File 'lib/informers/pipelines.rb', line 365 def call(texts, **generate_kwargs) is_batched = false is_chat_input = false # Normalize inputs if texts.is_a?(String) texts = [texts] inputs = texts else raise Todo end # By default, do not add special tokens add_special_tokens = generate_kwargs[:add_special_tokens] || false # /By default, return full text return_full_text = if is_chat_input false else generate_kwargs[:return_full_text] || true end @tokenizer.padding_side = "left" input_ids, attention_mask = @tokenizer.(inputs, add_special_tokens:, padding: true, truncation: true) .values_at(:input_ids, :attention_mask) output_token_ids = @model.generate( input_ids, generate_kwargs, nil, inputs_attention_mask: attention_mask ) decoded = @tokenizer.batch_decode(output_token_ids, skip_special_tokens: true) if !return_full_text && Utils.dims(input_ids)[-1] > 0 prompt_lengths = @tokenizer.batch_decode(input_ids, skip_special_tokens: true).map { |x| x.length } end to_return = Array.new(texts.length) { [] } decoded.length.times do |i| text_index = (i / output_token_ids.length.to_i * texts.length).floor if prompt_lengths raise Todo end # TODO is_chat_input to_return[text_index] << { generated_text: decoded[i] } end !is_batched && to_return.length == 1 ? to_return[0] : to_return end |